PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(First Semester)

Branch - CHEMISTRY

MATHEMATICS – I FOR CHEMISTRY

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question	Question Question	K	СО
No.	No.	_	Level	_
1	1	The locus of the centre of curvature for a curve is called the of the curve. a) involute b) evolute. c) envelope d)cycloid	K1	CO1
	2	The radius of curvature of the curve $y = e^x$ at the point where it crosses the y-axis is a)2 b) $\sqrt{2}$ c) $3\sqrt{2}$ d) $2\sqrt{2}$	K2	CO1
2	3	a) $2 - b$ (b) $\sqrt{2} - c$ (c) $\sqrt{3}\sqrt{2} - c$ (d) $\sqrt{2}\sqrt{2}$ a) $2/7 - b$ (15/8 c) $1/15 - d$ (d) $8/15 - c$	K 1	CO2
	4	$\int_{0}^{a} f(x) dx = \underline{\qquad}$ a) $\int_{0}^{a} f(x^{2}) dx$ b) $\int_{0}^{a} f(a+x) dx$ c) $\int_{0}^{a} f(a-x) dx$ d) $\int_{-a}^{a} f(x) dx$	K2	CO2
3	5	$\int \int \int z dz dy dx =$ a) 3/2 b) 6 c)9 d)9/2	K1	CO3
	6	The formula to find the total volume of solid of revolution is a) $2\pi \int_{a}^{b} \int_{0}^{f(x)} y dy dx$ b) $\int_{a}^{b} \int_{0}^{f(x)} y dy dx$ c) $2\int_{a}^{b} \int_{0}^{f(x)} dy dx$ d) $4\pi \int_{a}^{b} \int_{0}^{f(x)} y dy dx$	K2	CO3
4	7	$\int_{x_0}^{x_2} f(x)dx = \frac{h}{2} [\text{sum of the first and the last ordinates} + 2(\text{sum of the remaining ordinates}). This is rule. a) Trapezoidal b) Newton's c) Simpson's three-eighths d) Simpson's one -third$	K1	CO ²
	8	Simpson's three-eighths rule is applicable only when n is a multiple of a) 1 b)4 c) 3 d)2	K2	CO4
5	9	Which of the following is Euler's algorithm? a) $y_{n+1} = y_n + f(x, y_n), n = 0, 1, 2,$ b) $y_{n+1} = y_n + hf(x_n, y), n = 0, 1, 2,$ c) $y_{n+1} = hf(x_n, y_n), n = 0, 1, 2,$ d) $y_{n+1} = y_n + hf(x_n, y_n), n = 0, 1, 2,$	K1	COS
	10	In second order Runke-Kutta algorithm, $\Delta y = $ a) K_1 b) K_3 c) K_2 d) K_4	K2	со

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module	Question	Question	K Level	со
No. 1	No. 11.a.	What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point $(1,1)$?	К3	CO1
	11.b.	Prove that the (p,r) equation of the cardioid $r = a(1 - \cos \theta)$ is $p^2 = \frac{r^3}{2a}.$		
2	12.a.	If $f(x)$ is an even function of x, then prove that $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$	K4	CO2
	12.b.	(OR) Evaluate $\int x'' \log x dx$.		
3	13.a.	Evaluate $\iint xy dx dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$.	K3	CO3
	13.b.	(OR) Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.		
4	14.a.	From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 46. Age x 45 50 55 60 65 Premium y 114.84 96.16 83.32 74.48 68.48	K5	CO4
		ļ		
	14.b.	The population of a certain town is given below. Find the rate of growth of the population in 1931. Year		
5	15.a.	Using Taylor series method, find, correct to four decimal places, the value of $y(0.1)$, given $\frac{dy}{dx} = x^2 + y^2$ and $y(0) = 1$.	K4	COS
	15.b.	Obtain the values of y at $x = 0.1$, 0.2 using R.K. method of second order for the differential equation $y' = -y$, $y(0) = 1$.	11.4	

SECTION -C (30 Marks) Answer ANY THREE questions

 $(3 \times 10 = 30)$ ALL questions carry EQUAL Marks K CO Module Question Question Level No. No. Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. CO1 K4 16 1 Find a reduction formula for $I_{m,n} = \int \sin^m x \cos^n x \, dx$ (m, n being CO₂ K6 17 2 positive integers). Find the volume and position of the centre of gravity of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the co-ordinate CO₃ K5 3 18 planes. Evaluate $\int_{-x^4dx}^{3} x^4dx$ by using i) Trapezoidal rule ii) Simpson's rule. CO₄ K4 19 4 Verify your results by actual integration. Solve $y' = y - x^2$, y(0) = 1 by Picard's method up to the third K5 CO₅ 20 5 approximation. Hence find the value of y(0.1), y(0.2)