PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ### **BSc DEGREE EXAMINATION MAY 2025** (Second Semester) #### Branch - BIOCHEMISTRY #### **MATHEMATICS** Time: Three Hours Maximum: 75 Marks ## SECTION-A (10 Marks) Answer ALL questions ALL questions carry EQUAL marks $(10 \times 1 = 10)$ | ALL questions carry EQUAL marks (10 × 1 = 10) | | | | | | | | |---|-----------------|---|------------|-----|--|--|--| | Module
No. | Question
No. | Question | K
Level | со | | | | | 1 | 1 | If the eigen values of $\begin{bmatrix} 2 & 3 \\ x & y \end{bmatrix}$ are 4 and 8, then x & y = | K1 | CO1 | | | | | | 2 | a) 4, 10 b) 5, 8 c) -3, 9 d) -4, 10 If Two eigen values of $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8, then the eigen values of A^2 is | K1 | CO1 | | | | | 2 | 3 | If the sum of the roots of the equation $\lambda x^2 + 2x + 3\lambda = 0$ be equal to their product, then $\lambda = $ a) 4 b) -4 c) $2/3$ d) $-2/3$ | K1 | CO2 | | | | | | 4 | The transformed equation whose roots are negative of the roots of $x^3 - x^2 + x - 4 = 0$ is
a) - $x^3 + x^2 - x + 4 = 0$
b) $x^3 - x^2 - x - 4 = 0$
c) - $x^3 - x^2 - x - 4 = 0$
d) $x^3 + x^2 + x + 4 = 0$ | K2 | CO2 | | | | | | 5 | In Gauss Seidel method, the coefficient matrix is transformed into matrix. a) triangular b) unit c) square d) diagonal | K2 | CO3 | | | | | 3 | 6 | Which of the following is an assumption of Jacobi's method? a) The rate of convergence is quite slow compared with other methods b) The coefficient matrix has no zeros on its main diagonal c) Iteration involved in Jacobi's method converges d) The coefficient matrix has zeroes on its main diagonal | K1 | CO3 | | | | | 4 | 7 | The relationship between E and ∇ is
a) E = 1 - ∇
b) E = 1 + ∇
c) E = ∇ - 1
d) E = 1/ ∇ | K2 | CO4 | | | | | | 8 | The process of finding the values inside the interval (x ₀ , x _n) is called a) Interpolation b) Extrapolation c) Iterative d) Polynomial equation | K2 | CO4 | | | | | 5 | 9 | Let h be the finite difference, then the forward difference operator is defined by a) $f(x) = f(x/h)$ b) $f(x) = f(x*h)$ c) $f(x) = f(x-h)-f(x)$ d) $f(x) = f(x+h)-f(x)$ | K1 | CO5 | | | | | | 10 | Trapezoidal and Simpson's rule can be used to evaluate a) Multiple integrals b) Differentiation c) Double integrals d) Divided difference | K2 | CO5 | | | | Cont... ## SECTION - B (35 Marks) Answer ALL questions | | | All questions carry EQUAL Marks (5 × 7) | = 35) | | |---------------|-----------------|--|------------|------------| | Module
No. | Question
No. | Question | K
Level | СО | | 1 | 11.a. | Find the matrix whose eigen values are -1, -2 and the corresponding eigen vectors are $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ respectively. | К2 | 504 | | | (OR) | | | CO1 | | | 11.b. | Find the Eigen values and Eigen Vectors of $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ | | | | 2 | 12.a. | If α , β are the roots of the equation $3x^2 + 7x - 2 = 0$, calculate the values of (i) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (ii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ | К3 | CO2 | | | | (OR) | | | | | 12.b. | Form an equation whose roots are square of the roots of the equation $x^3 - 2x^2 + 3x + 1 = 0$ | | | | 3 | 13.a. | Solve the following system of equations by Gauss Seidel method correct to three decimal places 4x+2y+z=14, x+5y-z=10, x+y+8z=20. | K2 | CO3 | | | | KZ | 003 | | | | 13.b. | Solve the given system of equations by Gauss-Elimination method $x + y + z = 4$, $x + 4y + 3z = 8$, $x + 6y + 2z = 6$. | | | | | 14.a. | A third degree polynomial passes through the points (0, -1), (1, 1), (2, 1) and (3, -2), using Newton's forward interpolation formula find the polynomial f(x) and hence find f(1.5). | K3 | CO4 | | 4 | (OR) | | | | | | 14.b. | Using Lagrange's interpolation formula find f (4) given that $f(0) = 2$, $f(1) = 3$, $f(2) = 12$, $f(15) = 3587$. | | - | | 5 | 15.a. | Evaluate dy/dx and d^2y/dx^2 at x = 51 from the following data. X 50 60 70 80 90 Y 19.96 36.65 58.81 77.21 94.61 | | | | | (OR) | | | CO5 | | | 15.b. | Dividing the range 10 equal parts, estimate the value of $\frac{\pi}{2}$ sin x dx by (i) Trapezoidal rule (ii) Simpson's rule. | | | # SECTION -C (30 Marks) Answer ANY THREE questions ALL questions carry EQUAL Marks $(3 \times 10 = 30)$ | Module
No. | Question
No. | Question | K
Level | со | |---------------|-----------------|---|------------|-----| | 1 | 16 | Verify Cayley-Hamilton theorem and hence find A ⁻¹ and A ⁴ for $A = \begin{pmatrix} -2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ | K4 | CO1 | | 2 | 17 | Determine the root of $x^4 + x^3 - 7x^2 - x + 5 = 0$ which lies between 2 and 3 correct to three decimal places. | К3 | CO2 | | 3 | 18 | Use Gauss Jacobi method to approximate the solution of the following system of linear equations $5x - 2y + 3z = -1$; $-3x + 9y + z = 2$; $2x - y - 7z = 3$ | K3 | CO3 | | 4 | 19 | Using Lagrange's interpolation formula find f (x) given that $f(1) = 0$, $f(2) = 7$, $f(3) = 26$, $f(5) = 124$. | K4 | CO4 | | 5 | 20 | Compute f (0.5) and f (3.5) from the given data X | K4 | CO5 | Z-Z-Z **END**