PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2025

(Second Semester)

Branch - BIOCHEMISTRY

MATHEMATICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

ALL questions carry EQUAL marks (10 × 1 = 10)							
Module No.	Question No.	Question	K Level	со			
1	1	If the eigen values of $\begin{bmatrix} 2 & 3 \\ x & y \end{bmatrix}$ are 4 and 8, then x & y =	K1	CO1			
	2	a) 4, 10 b) 5, 8 c) -3, 9 d) -4, 10 If Two eigen values of $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8, then the eigen values of A^2 is	K1	CO1			
2	3	If the sum of the roots of the equation $\lambda x^2 + 2x + 3\lambda = 0$ be equal to their product, then $\lambda = $ a) 4 b) -4 c) $2/3$ d) $-2/3$	K1	CO2			
	4	The transformed equation whose roots are negative of the roots of $x^3 - x^2 + x - 4 = 0$ is a) - $x^3 + x^2 - x + 4 = 0$ b) $x^3 - x^2 - x - 4 = 0$ c) - $x^3 - x^2 - x - 4 = 0$ d) $x^3 + x^2 + x + 4 = 0$	K2	CO2			
	5	In Gauss Seidel method, the coefficient matrix is transformed into matrix. a) triangular b) unit c) square d) diagonal	K2	CO3			
3	6	 Which of the following is an assumption of Jacobi's method? a) The rate of convergence is quite slow compared with other methods b) The coefficient matrix has no zeros on its main diagonal c) Iteration involved in Jacobi's method converges d) The coefficient matrix has zeroes on its main diagonal 	K1	CO3			
4	7	The relationship between E and ∇ is a) E = 1 - ∇ b) E = 1 + ∇ c) E = ∇ - 1 d) E = 1/ ∇	K2	CO4			
	8	The process of finding the values inside the interval (x ₀ , x _n) is called a) Interpolation b) Extrapolation c) Iterative d) Polynomial equation	K2	CO4			
5	9	Let h be the finite difference, then the forward difference operator is defined by a) $f(x) = f(x/h)$ b) $f(x) = f(x*h)$ c) $f(x) = f(x-h)-f(x)$ d) $f(x) = f(x+h)-f(x)$	K1	CO5			
	10	Trapezoidal and Simpson's rule can be used to evaluate a) Multiple integrals b) Differentiation c) Double integrals d) Divided difference	K2	CO5			

Cont...

SECTION - B (35 Marks)

Answer ALL questions

		All questions carry EQUAL Marks (5 × 7)	= 35)	
Module No.	Question No.	Question	K Level	СО
1	11.a.	Find the matrix whose eigen values are -1, -2 and the corresponding eigen vectors are $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ respectively.	К2	504
	(OR)			CO1
	11.b.	Find the Eigen values and Eigen Vectors of $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$		
2	12.a.	If α , β are the roots of the equation $3x^2 + 7x - 2 = 0$, calculate the values of (i) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (ii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$	К3	CO2
		(OR)		
	12.b.	Form an equation whose roots are square of the roots of the equation $x^3 - 2x^2 + 3x + 1 = 0$		
3	13.a.	Solve the following system of equations by Gauss Seidel method correct to three decimal places 4x+2y+z=14, x+5y-z=10, x+y+8z=20.	K2	CO3
		KZ	003	
	13.b.	Solve the given system of equations by Gauss-Elimination method $x + y + z = 4$, $x + 4y + 3z = 8$, $x + 6y + 2z = 6$.		
	14.a.	A third degree polynomial passes through the points (0, -1), (1, 1), (2, 1) and (3, -2), using Newton's forward interpolation formula find the polynomial f(x) and hence find f(1.5).	K3	CO4
4	(OR)			
	14.b.	Using Lagrange's interpolation formula find f (4) given that $f(0) = 2$, $f(1) = 3$, $f(2) = 12$, $f(15) = 3587$.		-
5	15.a.	Evaluate dy/dx and d^2y/dx^2 at x = 51 from the following data. X 50 60 70 80 90 Y 19.96 36.65 58.81 77.21 94.61		
	(OR)			CO5
	15.b.	Dividing the range 10 equal parts, estimate the value of $\frac{\pi}{2}$ sin x dx by (i) Trapezoidal rule (ii) Simpson's rule.		

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	Verify Cayley-Hamilton theorem and hence find A ⁻¹ and A ⁴ for $A = \begin{pmatrix} -2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$	K4	CO1
2	17	Determine the root of $x^4 + x^3 - 7x^2 - x + 5 = 0$ which lies between 2 and 3 correct to three decimal places.	К3	CO2
3	18	Use Gauss Jacobi method to approximate the solution of the following system of linear equations $5x - 2y + 3z = -1$; $-3x + 9y + z = 2$; $2x - y - 7z = 3$	K3	CO3
4	19	Using Lagrange's interpolation formula find f (x) given that $f(1) = 0$, $f(2) = 7$, $f(3) = 26$, $f(5) = 124$.	K4	CO4
5	20	Compute f (0.5) and f (3.5) from the given data X	K4	CO5

Z-Z-Z

END