22CRM206N/ 22FSU206N/ 22FTU206N

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BCom DEGREE EXAMINATION MAY 2025

(Second Semester)

Common to Branches – COMMERCE (RM)/ COMMERCE (FS)/ COMMERCE (FT)

MATHEMATICS FOR COMMERCE

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

ALL questions carry EQUAL marks (10 × 1 10)				
Module	Question No.	Question	K Level	СО
No. 1	1	To express $\frac{a}{b}$ as a percentage, we multiply it by and simplify. a) 10 b) 100 c) 10^{-1} d) 100^{-1}	K1	CO1
	2	Any term starting from the second term can be obtained by multiplying the previous term by a constant is calledseries. a) Harmonic b) Geometric c) Arithmetic d) Constant	K2	CO1
	3	If $a_{ij} = -a_{ji}$, the matrix is said to be a) skew symmetric b) symmetric c) diagonal d) square	K1	CO2
2	4	A-1 exists only if matrix. a) $ A \neq 0$ b) $ A \neq 0 \leq$ c) $ A = 0$ d) $ A \neq 0 \geq$	K2	CO2
3	5	Derivative of logx is a) 1	K1	CO3
	6	The second order condition for y being maximum is a) $\frac{d^2y}{dx^2} > 0$ b) $\frac{d^2y}{dx^2} \neq 0$ c) $\frac{d^2y}{dx^2} = 0$ d) $\frac{d^2y}{dx^2} < 0$	K2	CO3
4	7	$\int x^{n} dx \underline{\hspace{1cm}}$ a) $\frac{x^{n}}{n+1} + c$ b) $\frac{x^{n+1}}{n+1} + c$ c) $\frac{x^{n-1}}{n-1} + c$ d) $\frac{x^{n}}{n} + c$	K1	CO4
	8	$\int_{a}^{b} f(x)dx \text{ denotes a} \underline{\hspace{1cm}} \text{integral.}$ a) Riemann b) double c) definite d) triple	K2	CO4
5-	9	method gives solution of an L.P.P in which there are only two variables. a) simplex b) Big M c) Dual Simplex d) graphical	K 1	со
	10	The optimality condition for simplex method is a) $z_j - c_j \le 0$ b) $z_j - c_j \ne 0$ c) $z_j - c_j \ge 0$ d) $z_j - c_j = 0$	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Find the interest value of Rs.2000 due in 8 months at 16% simple interest.	K3	
		(OR)		CO1
	11.b.	How many annual payments of Rs.50 each are needed to accumulate Rs.1000, if the interest is 5% compounded annually?		

Cont...

22CRM206N/ 22FSU206N/ 22FTU206N Cont...

		Verify commutative property for addition.		
	12.a.	$A = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}; B = \begin{pmatrix} .5 & -2 \\ -1 & 6 \end{pmatrix} C = \begin{pmatrix} 0 & 2 \\ 1 & -3 \end{pmatrix}$	K3	CO2
2		(OR)		
	12.b.	Solve: $3x + 2y = 14$; 3x + 3y = 18.		
	13.a.	Find $\frac{d(x^n)}{dx}$ and $\frac{d(\log_e x)}{dx}$ from first principle.		
3	,	(OR)	K3	CO3.
	13.b.	Compute $\frac{dy}{dx}$ when $x = 4t$ and $y = 2t^2$.		
	14.a.	Compute $\int_{0}^{2} (x^2 - 4x + 5) dx$	К3	CO4
4	(OR)		15	
	14.b.	Evaluate $\int x e^{mx} dx$		
5	15.a.	An animal feed company must produce atleast 200kg of a mixture consisting of ingredients A and B daily. A costs Rs.3 per kg and B costs Rs.5 per kg. Not more than 80kg of A can be used and atleast 60kg of B must be used. Formulate this as L.P.P to find the minimum cost mixture.	К3	CO5
	(OR)		}	1
	15.b.	Solve graphically, $Max z = 3x_1 + 2x_2$, subject to		
		$x_1 - x_2 \le 1$; $x_1 + x_2 \ge 3$; $x_1, x_2 \ge 0$		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module	Question	Question	K Level	со
No. 1	No. 16	The annual increase of a population of a city is found to be 4% approximately. The population of the city was 25 lakhs at the end of 1975. What will be the population at the end of 1985?	К3	CO1
2	17	Consider an economy of 2 industries P and Q, where the data in millions of Rs. is given below: FINAL TOTAL P Q DEMAND OUTPUT P 14 6 8 28 PRODUCER O 7 18 11 36	К3	CO2
3	18	Determine for what values of x, $2x^3 - 21x^2 + 36x - 20$ is maximum and minimum respectively? Also find the maximum and minimum values.	K3	соз
4	19	Evaluate $\int x^2 e^x dx$	K3	CO4
5	20	Solve $Min z = -x_1 + 2x_2$, subject to, $-x_1 + x_2 \le 10$; $x_1 + x_2 \le 6$; $x_1 - x_2 \le 2$; $x_1, x_2 \ge 0$	К3	CO5