TOTAL PAGES: 3 23FPB317N/23FPB317

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BVoc DEGREE EXAMINATION DECEMBER 2024

(Third Semester)

Branch - FOOD PROCESSING TECHNOLOGY

MATHEMATICS AND STATISTICS

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

		ALL questions carry EQUAL marks (1	$10 \times 1 = 10$	0)
Module No.	Question No.	Question	K Level	со
1	1	A square matrix A is said to be an matix, if AĀ=ĀA=I, where I is a unit matrix. (a) Diagonal (b) Scalar (c) Square (d) Orthogonal	K1	CO1
	2	A matrix is said to be idempotent matrix, if (a) $A=\bar{A}$ (b) $A^2=\bar{A}^1$ (c) $A^2=A$ (d) $\bar{A}=A$	K2	CO1
2	3	The Arithmetic mean of n observations x_1,x_2,x_n is given by (a) $1/n \sum x_i^2$ (b) $1/N \sum x_i$ (c) $1/n \sum x_i$ (d) $1/N \sum x_i^2$	K1	CO2
	4	The least value of root mean square deviation is called (a) Variance (b) Mea (c) Standard deviation (d) Median	K2	CO2
3	5	The correlation coefficient lies between (a) $-1 \le r \le 1$ (b) $0 \le r \le 1$ (c) $-1 \le r \le 2$ (d) $-1 \le r \le 0$	K1	CO3
	6	Probable error of r is (a) $0.6745 \ 1-r^2/\sqrt{n}$ (b) $0.6754 \ 1+r^2/\sqrt{n}$ (c) $0.6547 \ 1-r^2/\sqrt{n}$ (d) $1-r^2/\sqrt{n}$	K2	CO3
4	7	Which is Null Hypothesis (a) $H_0: \mu \neq \mu_0$ (b) $H_0: \mu \neq \mu_0$ (c) $H_0: \mu = \mu_0$ (d) $H_0: \mu = \mu_0$	K1	CO4
	8	Standard Error for sample mean(\ddot{x}) (a) $\frac{\sqrt{n}}{\sigma}$ (b) $\frac{\sqrt{PQ}}{N}$ (c) $\frac{\sigma}{\sqrt{n}}$ (d) $\frac{\sqrt{pq}}{n}$	K2	CO4
5	9	Chi-Square test formula (a) $\sum (Oi - Ei)^2/Ei$ (b) $\sum (Oi - Ei)^2/Oi$ (c) $\sum (Oi + Ei)^2/Ei$ (d) $\sum (Oi + Ei)^2/Oi$	K1	CO5
	10	ANOVA in null hypothesis (a) $H_0: \mu_1 = \mu_2 = \dots = \mu_k = \mu$ (b) $H_0: \mu_1 \neq \mu_2 \neq \mu_3 = \dots \neq \mu_k = \mu$ (c) $H_1: \mu_1 = \mu_2 = \dots = \mu_k = \mu$ (d) $H_1: \mu_1 \neq \mu_2 \neq \dots \neq \mu_k \neq \mu$	K2	CO5

Cont...

23FPB317N/23FPB317 Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module	Question	Question	K Level	СО
No.	No.	Γ1 2 -2 1		
1	11.a.	Find AA^T if $A = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}$	K1	
	(OR)			CO1
	11.b.	Find the conjugate of transpose matrix (A ^T) of the Matrix A = $\begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & 2i \end{bmatrix}$	K4	
2	12.a.	Find the arithmetic mean of the following frequency distribution: X:1 2 3 4 5 6 7 F:5 9 12 17 14 10 6	K1	
		(OR)		CO2
	12.b.	In usual notation, we are given $n_1=100$, $\ddot{x}_1=15$, $\sigma_1=3$, $n_2=150$, $\ddot{x}_2=16$, $\ddot{x}=15.6$. find $\sigma_2=?$	K6	CO2
	13.a.	Prove that Two independent variables are uncorrelated.		
3		(OR)	K1	ı
	13.b.	Given regression equations: 8x-10y+66=0, 4x-18y=214 and variance of x=9 i) the mean values of x and y ii) the correlation coefficient between x and y	K5	CO3
4	14.a.	A random sample of 500 apples was taken from a large consignment and 60 was found to be bad. Obtain the 98% confidence limits for the percentage of bad apples in the consignment.	K1	
		(OR)	К3	CO4
	14.b.	Write down the best procedure of hypothesis.		
5	15.a.	Carry out the analysis of variance for the following table:		
		Varieties chemists	К3	
		A 8 5 5 7 B 7 6 4 4 C 3 6 5 4		CO5
	(OR)			
	15.b.	The following table shows the distribution of goals in a foot ball match. No. of goals: 0 1 2 3 4 5 6 7 No. of matchs: 95 158 108 63 40 9 5 2.	K6	

23FPB317N/23FPB317 Cont....

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry **EQUAL** Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	If $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & -2 & -4 \\ -1 & -2 & -4 \\ 1 & 2 & 4 \end{pmatrix}$ Prove that $AB \neq BA$.	K2	CO1
2	17	Explain Diagrammatic and Graphical Intra presentations of data.	K4	CO2
3	18	Calculate the correlation coefficient for the following heights (in inches) of fathers(x) and their sons(y). X 65 66 67 67 68 69 70 72 Y 67 68 65 68 72 72 69 71	К3	CO3
4	19	In Two large population there are 30 and 25 percent respectively of blue-eyed people. In this difference likely to be hidden in the two populations?	K5	CO4
5	20	A test was given to five students taken at random from the fifth class of three schools of a town: The individual scores are, School I 9 7 6 5 8 School II 7 4 5 4 5 School III 6 5 6 7 6 Carry but the analysis of variance.	K6	CO5