PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Sixth Semester)

Branch - MATHEMATICS

DISCIPLINE SPECIFIC ELECTIVE - II: NUMERICAL METHODS

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(5 \times 1 = 5)$

- 1. If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$ then _____.
 - (a) g has exactly one fixed point in [a,b]
 - (b) g has atleast one fixed point in [a,b]
 - (c) g has no fixed point in [a,b]
 - (d) g'(x) exists on [a,b]
- 2. If x₀, x₁, x₂,...x_n are n+1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree exists.
- (b) n+1 or less
- (c) n
- (d) n or less
- 3. The midpoint rule approximation of $\int_{0.5}^{1} x^4 dx =$ _____. (a) 0.528123 (b) 0.158203 (c) 0.281253

- 4. Which of the following methods give more accurate results for initial value problems?
 - (a) Taylor's method
- (b) Runge-Kutta method of order two

(c) Euler's method

- (d) Runge-Kutta method of order four.
- 5. Which of the following methods is employed for solving a system of linear equations?
 - (a) Neville's
- (b) Newton's
- (c) Gauss Siedel (d) Simpson's rule

SECTION - B (15 Marks)

Answer ALL Questions

ALL Ouestions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6. (a) Determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$.

- (b) Show that $g(x) = \frac{(x^2-1)}{3}$ has a unique fixed point on the interval [-1,1].
- 7. (a) Determine the second Lagrange interpolating polynomial for $f(x) = \frac{1}{x}$ using the numbers $x_0 = 2$, $x_1 = 2.75$ and $x_2 = 4$.

(OR)

(b) The values of $f(x) = \ln x$ accurate to the places are given in the following table.

i	Xi	ln x _i
0	2.0	0.6931
1	2.2	0.7885
2	2.3	0.8329

Apply Neville's method and four digit rounding arithmetic to approximate $f(2.1) = \ln 2.1$ by completing the Neville's table.

8. (a) Apply the Simpson's rule and find the value of $\int_0^2 f(x) dx$ when $f(x) = \sqrt{1 + x^2}$. Compare the result with exact value of the integral.

(OR)

- (b) Use the composite Trapezoidal rule and find the value of $\int_0^{3\pi/8} \tan x \, dx$ with n = 8.
- 9. (a) Show that the initial value problem $\frac{dy}{dx} = y t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 is well posed on $D = \{(t,y) \mid 0 \le t \le 2 \text{ and } -\infty < y < \infty\}$.
 - (b) Apply Euler's method to approximate the solution for the initial value problem $y' = t e^{3t} - 2y$, $0 \le t \le 1$, y(0) = 0 with h = 0.5.

Cont...

10. (a) Apply Gaussian elimination method and solve the following system of equations.

$$x_1 + x_2 + x_3 = 4$$

 $2x_1 + 2x_2 + x_3 = 4$
 $x_1 + x_2 + 2x_3 = 6$

(OR)

(b) If the spectral radius satisfies $\rho(T) < 1$, then show that $(I - T)^{-1}$ exists and $(I - T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j$

$\frac{\text{SECTION} - C}{\text{ANSWER ALL QUESTIONS}}$ (5 × 6 = 30 MARKS)

ALL questions carry EQUAL marks

11. (a) Show that if A is any positive number, then the sequence defined by $x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}$, for $n \ge 1$, converges to \sqrt{A} whenever $x_0 > 0$.

(OR)

- (b) Apply Secant method to find a solution to $x \cos x = 0$ in the interval $\left[0, \frac{\pi}{2}\right]$ that is accurate to within 10^{-4} .
- 12. (a) Apply the Newton's divided difference formula to construct interpolating polynomials of degree one, two ,three and find the value of f(8.4) using each of the polynomials given f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091.

 (OR)

(b) For the following table of data apply Newton's backward difference formula and determine the value of f(2.0).

X	f(x)
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

13. (a) Derive the three-point formulas for numerical differentiation.

(OR)

- (b) Use Romberg integration to compute $R_{3,3}$ for the integral $\int_3^{3.5} \frac{x}{\sqrt{x^2-4}} dx$.
- 14. (a) Suppose f is continuous and satisfies a Lipchitz condition with constant L on D = {(t,y) | a ≤ t ≤ b and -∞ < y < ∞} and that a constant M exists with |y"(t)| ≤ M for all t∈[a,b], where y(t) denotes the unique solution to the initial value problem y' = f(t,y), a ≤ t ≤ b, y(a) = α. Let w₀,w₁,w₂,...w_N be the approximations generated by Euler's method for some positive integer N. Then show that for each i = 0, 1, 2,..., N,

$$|y(t_i) - w_i| \le \frac{hM}{2L} [e^{L(t_i - a)} - 1].$$

- (b) Use the Modified Euler method to approximate the solution for the initial value problem $y' = \cos 2t + \sin 3t$, $0 \le t \le 1$, y(0) = 1 with h = 0.25 and actual solution $y(t) = \frac{1}{2} \sin 2t \frac{1}{3} \cos 3t + \frac{4}{3}$.
- 15. (a) Solve the following system of equations by Gaussian elimination method.

$$x_1 - x_2 + 2x_3 - x_4 = -8$$

$$2x_1 - 2x_2 + 3x_3 - 3x_4 = -20$$

$$x_1 + x_2 + x_3 = -2$$

$$x_1 - x_2 + 4x_3 + 3x_4 = 4$$
(OR)

(b) Solve the following system of equations by Gauss Seidel-iterative technique.

$$10 x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$