PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(First Semester)

Branch - MATHEMATICS

ANALYTICAL GEOMETRY OF 3D AND TRIGONOMETRY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 1 = 10)$

		ALL questions carry EQUAL marks (10		•)
Module No.	Question No.	Question	K Level	СО
1	1	The direction ratio for the straight line $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}$ is a. (3,4,-2) b. (-3, -4, 2) c. (-1,2,1) d. (1,-2,-1)	K1	CO1
	2	The two lines are coplanar, they must be a. Parallel b. intersect c. touches each other d. not intersect	K2	CO1
2	3	The centre of the sphere of $x^2 + y^2 + z^2 - 12x + 2y - 4z + 16 = 0$ is a. (-6, -1, 2) b. (6,1,2) c. (6,-1,2) d. (6,1,-2)	K1	CO2
	4	Equation of the tangent plane to the sphere $x^2 + y^2 + z^2 = r^2$ at the point (x_1,y_1,z_1) is a. $xx1 + yy1 + zz1 = r^2$ b. $x1 + y1 + z1 = r^2$ c. $x + y + z = r^2$ d. $xx1 + yy1 + zz1 = 0$	K2	CO2
3	5	The condition that the cone has three mutually perpendicular generators is a. $\theta = 45^{\circ}$ b. $\theta = 180^{\circ}$ c. $\theta = 90^{\circ}$ d. $\theta = 60^{\circ}$	K1	CO3
	6	The general equation to a cone which touches the coordinate planes is a. $f^2x^2 + g^2y^2 + h^2z^2 = 0$ b. $f^2x^2 + g^2y^2 + h^2z^2 = 1$ c. a. $f^2x^2 + g^2y^2 + h^2z^2 - 2ghyz - 2hfzx - 2fgxy = 0$ d. a. $f^2x^2 + g^2y^2 + h^2z^2 + 2ghyz + 2hfzx + 2fgxy = 0$	K2	CO3
4	7	Any plane which intersect the cylinder whose conic equation is of second degree is a a. cylinder b. cone c. guiding curve d. right circular cylinder	K1	CO4
	8	The equation of the tangent plane at $P(x1,y1,z1)$ is a. $axx1 + byy1 + czz1 = 1$ b. $xx1 + yy1 + zz1 = 1$ c. $xx1 + yy1 + zz1 = 0$ d. $axx1 + byy1 + czz1 = 0$	K2	CO4
5	9	$cosh^{2}x - sinh^{2}x = $ a. 1 b. 0 c. cosx d. sinx	K1	CO5
	10	Expansion of $\sin \theta$ is a. $\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots$ b. $\theta + \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots$ c. $1 - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots$ d. $1 + \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots$	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5\times7=35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Find the perpendicular distance from P(3, 9, -1) to the line $\frac{z+8}{-8} = \frac{y-31}{1} = \frac{z-13}{5}$.		
	(OR)			CO1
	11.b.	Prove that the lines are coplanar. $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-1}{3}; \frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}.$		
2	12.a.	Find the coordinates of centre and radius of the sphere $2x^2 + 2y^2 + 2z^2 - 2x + 4y + 2z - 15 = 0$		CO2
		(OR)	K3	
	12.b.	Find the equation of the sphere having the circle $x^2 + y^2 + z^2 - 2x + 4y - 6z = 0$, $2x - y + 2z = 5$ for a great circle.		
	13.a.	Show that the equation of a right circular cone whose vertex is O, axis OZ and semi vertical angle α is $x^2 + y^2 = z^2 tan \alpha$.	K3	CO3
3	(OR)			
	13.b.	Find the equation of the tangent planes to the cone $9x^2 - 4y^2 + 16z^2 = 0$ which contain the line $\frac{x}{32} = \frac{y}{72} = \frac{z}{27}$.		
	14.a.	Find the equation of a right circular cylinder of radius 3 with axis $\frac{x+2}{3} = \frac{y-4}{6} = \frac{z-1}{2}$.	K4	CO4
4	(OR)			
	14.b.	Derive the condition for the plane $lx+my+nz=p$ to touch the conicoid $ax^2 + by^2 + cz^2 = 1$.		
	15.a.	Express $\cos 8\theta$ in terms of $\sin \theta$.		
5	(OR)		K4	CO5
	15.b.	Separate into real and imaginary parts tanh(1+i).		<u></u>

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	Find the shortest distance between the lines $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}$; $\frac{x-1}{1} = \frac{y+7}{2} = \frac{z+2}{2}$.	K2	CO1
2	17	Show that the plane $2x-y-2z=16$ touches the sphere $x^2 + y^2 + z^2 - 4x + 2y + 2z - 3 = 0$ and find the point of contact.	К3	CO2
3	18	Find the condition for the equation $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2fxyz = 0$ to represent the right circular cone. Obtain the equation of the axis and the vertical angle of the cone.	K3	CO3
4	19	Find the equations of the tangent planes to $x^2 + y^2 + 4z^2 = 1$ which intersect in the line whose equations are 12x-3y-5=0, z=1.	K4	CO4
5	20	Expand $sin^8 \theta \cos^5 \theta$ in a series of sines of multiples of θ .	K4	CO5