PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch - MATHEMATICS

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question Question					
No.	Question No.	Question	K Level	СО		
1	1	Torricelli's law is given by a) $\frac{dt}{dV} = -k\sqrt{y}$ b) $\frac{dV}{dt} = k\sqrt{y}$ c) $\frac{dV}{dt} = -k\sqrt{y}$ d) $\frac{dt}{dV} = k\sqrt{y}$	K1	CO1		
	2	The integrating factor of the linear first order differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ is a) $e^{\int P(x)dx}$ b) $e^{-\int P(x)dx}$ c) $e^{\int Q(x)dx}$ d) $e^{\int Q(x)dx}$	K1	CO1		
2	3	The general solution of $y'' + y = 0$ is $y(x) = $ a) $c_1 \cos x - c_2 \sin x$ b) $c_1 \cos x + c_2 \sin x$ c) $c_1 \sin x - c_2 \cos x$ d) $c_1 \cos x - c_2 \sec x$	K2	CO2		
	4	The Wronskian of (e^x, xe^x) is a) xe^x b) e^x c) e^{2x} d) xe^{2x}	K2	CO2		
3	5	If the operational determinant is identically zero, then the system is said to be a) generate b) degenerate c) independent d) dependent	K1	CO3		
	6	A linear first-order system is if the functions are all identically zero. a) non homogeneous b) homogeneous c) independent d) dependent	K1	CO3		
4	7	Laplace transform of function f(t) is given by a) $F(t) = \int_{0}^{\infty} e^{-t} f(t) dt$ b) $F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$ c) $f(t) = \int_{0}^{\infty} e^{-t} f(t) dt$ d) $f(s) = \int_{0}^{\infty} e^{-st} f(t) dt$	K1	CO4		
	8	$\Gamma\left(\frac{5}{2}\right) = \underline{\qquad}$ a) 1 b) $\frac{1}{2}\sqrt{\pi}$ c) $\sqrt{\pi}$ d) $\frac{3}{4}\sqrt{\pi}$	K2	CO4		
5	9	Which of the following is not a property of Laplace transforms? a) Linearity b) Differentiation property c) Convolution property d) Time-shift property	K1	CO5		
	10	$F'(s) = \underline{\hspace{1cm}}.$ a) $L[t f(t)]$ b) $L[-\left(\frac{f(t)}{t}\right)]$ c) $L[-t f(t)]$ d) $L[-\left(\frac{f(t)}{t}\right)]$	K2	CO5		

SECTION - B (35 Marks) Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 7 = 35)$

Module	Module Question (5 × / = 35)						
No.	No.	Question	K Level	СО			
1	11.a.	The population of a colony of bacteria at time $t = 0$ hours was 1000, and that the population doubled after 1 hour. Predict the number of bacteria in the population after $1\frac{1}{2}$ hours.					
	(OR)		К3	CO1			
	11.b.	Solve the initial value problem $x^2 \frac{dy}{dx} + xy = \sin x$, $y(1) = y_0$.					
	12.a.	Evaluate the initial value problem $y'' - 2y' + y = 0$ given $y(0) = 3$, $y'(0) = 1$.					
	(OR)						
2	12.b.	Show that the three solutions $y_1(x) = x$; $y_2(x) = x \ln x$ and $y_3(x) = x^2$ of the third-order equation $x^3y^{(3)} - x^2y'' + 2xy' - 2y = 0$ are linearly independent on the open interval $x>0$. Hence find its particular solution that satisfies the initial conditions $y(1) = 3$; $y'(1) = 2$; $y''(1) = 1$.	K4	CO2			
	13.a.	Obtain the general solution of $x' = y$ and $y' = 2x + y$.					
3	(OR)			CO3			
	13.b.	Derive a general solution of the system $(D-4)x + 3y = 0$, $-6x + (D+7)y = 0$.					
	14.a.	Evaluate L(cos h 2 t).					
4	(OR)		K4	CO4			
	14.b.	Evaluate the inverse Laplace transform of $\frac{1}{s^2(s-a)}$.					
	15.a.	Obtain $L^{-1}[\tan^{-1}\left(\frac{1}{s}\right)]$.					
_	(OR)		K3	CO5			
5	15.b.	A mass $m=1$ is attached to a spring with constant $k=4$; there is no dashpot. The mass is released from rest with $x(0)=3$. At the instant $t=2\pi$ the mass is struck with a hammer, providing an impulse p=8. Determine the motion of the mass.	К3	CO3			

Cont

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry **EQUAL** Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	Assume that Lake Erie has a volume of 480 km ³ and that its rate of inflow (from Lake Huron) and outflow (to Lake Ontario) are both 350 km ³ per year. Suppose that at the time t = 0 (years), the pollutant concentration of Lake Erie caused by past industrial pollution that has now been ordered to cease is five times that of Lake Huron. If the outflow henceforth is perfectly mixed lake water, how long will it take to reduce the pollution concentration in Lake Erie to twice that of Lake Huron?	K4	CO1
2	17	Find the particular solution of $3y'' + y' - 2y = 2 \cos x$.	K3	CO2
3	18	Obtain the particular solution of the system $x' = 4x - 3y$, $y' = 6x - 7y$ that satisfies the initial conditions $x(0) = 2$, $y(0) = -1$.	К3	CO3
4	19	Using Laplace Transform, solve the initial value problem $x'' - x' - 6x = 0$, $x(0) = 2$, $x'(0) = -1$.	K3	CO4
5	20	Consider the RLC circuit with $R = 110 \Omega$, $L = 1 H$, $C = 0:001$ F and a battery supplying $E_0 = 90 V$. Initially there is no current in the circuit and no charge on the capacitor. At time $t = 0$ the switch is closed and left closed for 1 second. At time $t = 1$ it is opened and left open thereafter. Calculate the resulting current in the circuit.	K4	CO5