PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Sixth Semester)

Branch - MATHEMATICS

COMPLEX ANALYSIS

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(5 \times 1 = 5)$

- 1. A function which is analytic at every point of the complex plane is ---- function
 - (i) continuous

(ii) entire

(iii) bounded

- (iv) differentiable
- 2. Invariant points of $w = \frac{1+z}{1-z}$ are
 - $(i) \pm 1$

 $(ii) \pm i$

 $(iii) \pm 2$

- (iv) 0,0
- 3. $\int_C \frac{dz}{z-3} = ---$ where C is the circle |z-2| = 5
 - (i) $2\pi i$

(ii) 4πi

(iii) 6πi

- (iv) πi
- 4. The singularity of the function $\frac{\sin z}{z}$ at z = 0 is
 - (i) essential singularity

(ii) simple pole

(iii) removable singularity

- (iv) double pole
- 5. Residue at z = 2 of the function $f(z) = \frac{2z+1}{z^2-z-2}$ is

(i) $\frac{5}{3}$

(ii) $\frac{1}{3}$

 $(iii) \frac{3}{5}$

 $(iv)^{\frac{2}{3}}$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6. (a) Verify C-R equations for the function $f(z) = z^3$.

(OR)

- (b) Derive the complex form of C-R equations.
- 7. (a) Prove that any bilinear transformation transform real axis into itself.

(OR)

- (b) Find the bilinear transformation which sends the points $-1,1,\infty$ into -i,-1,i respectively.
- 8. (a) Evaluate $\int_C f(z)dz$ where $f(z) = y x i3x^2$ and C is the line segment form

z = 0 to z = 1 + i

(OR)

- (b) State Cauchy's integral formula and find $\int_C \frac{dz}{z-2}$ where C is the circle |z-2|=5.
- 9. (a) Expand $\cos z$ into a Taylor's series about the point $z = \frac{\pi}{2}$ and determine the region of convergence.

(OR)

- (b) State and Prove Riemann's Theorem.
- 10. (a) Evaluate the residue of $\frac{z+1}{z^2-2z}$ at its poles.

(OR)

(b) Calculate the residue at z = 0 of cot z at z=0.

SECTION -C (30 Marks) Answer ALL questions

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11.(a) Verify whether $f(z) = e^x(\cos y i \sin y)$ is nowhere differentiable or not. (OR)
 - (b) Find the analytic function f(z) = u + iv if $u + v = \frac{\sin 2x}{\cos h2y \cos 2x}$.
- 12. (a) Any bilinear transformation preserves cross ratio. Justify this statement.
 - (b) Prove that any bilinear transformation which maps the unit circle |z|=1 onto the unit circle |w|=1 can be written in the form $w=e^{i\lambda}(\frac{z-\alpha}{\overline{\alpha}z-1})$ where λ is real.
- 13. (a) Prove that $\left| \int_a^b f(t)dt \right| \le \int_a^b |f(t)|dt$.
 - (b) State and prove Cauchy's theorem.
- 14. (a) State and prove Taylor's Theorem.

(b) Find the Laurent's series expansion of the function $\frac{z+4}{(z+3)(z-1)^2}$ in (i) 0 < |z-1| < 4 and (ii) |z-1| > 4.

15. (a) State and prove Cauchy's Residue Theorem.

(OR

(b) Evaluate $\int_0^\infty \frac{dx}{1+x^4}$ using contour integration method.