PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Sixth Semester)

Branch - MATHEMATICS

LINEAR ALGEBRA

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

If the matrix $A = \begin{bmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{bmatrix}$ is symmetric, then x =_____.

a) 3 b) 5 c) 2 d) 4

2. $F^{(n)}$ is isomorphic $F^{(m)}$ if and only if _____.

- a) n < m
- b) n > m c) $n \neq m$

3. Let $V = \mathbb{R}^2$ with inner product defined by $\langle u, v \rangle = u_1 v_1 + u_2 v_2$, then ||(1,2)|| =___.

- a) $\sqrt{2}$
- b) $\sqrt{3}$ c) $\sqrt{4}$

4. Find the value of k such that the rank of a matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & k \end{bmatrix}$ is 1 b) 16 c) 12

- a) 8

5. The kernel of a matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of

- a) \mathbb{R}^n
- b) Rm
- c) \mathbb{R}^{n-m}
- d) \mathbb{R}^{n+m}

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 3 = 15)$

6. a) Prove that given A is a Hermitian Matrix, then iA is a skew Hermitian matrix.

- b) Show that the matrix $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.
- 7. a) If U and W are subspaces of V, prove that $U + W = \{v \in V | v = u + w, u \in U, w \in W\}$ is a subspace of V.

OR

- b) If F is the field of real numbers, prove that vectors (1,1,0,0), (0,1,-1,0) and (0,0,0,3)in $F^{(4)}$ are linearly independent over F.
- 8. a) Prove that A(W) is a subspace of \hat{V} .

OR

- b) State and prove Schwarz inequality.
- 9. a) Show that the matrices A and $P^{-1}AP$ have the same characteristic roots.

b) Prove that the characteristic roots of a Hermitian matrix are all real.

Cont...

10. a) Compute the matrix product
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ -1 & -1 & -1 \end{pmatrix}$$
.

b) Prove that if $T \in A(V)$ and if $\dim_F V = n$ then T can have at most n distinct characteristic roots in F.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11. a) If A be $m \times n$ matrix and B be $n \times p$ matrix then prove that $(AB)^T = B^T A^T$.

- b) Prove that for given A and B be symmetric matrices of order n then AB+BA is symmetric and AB is symmetric if AB = BA.
- 12. a) If V is the internal direct sum of $U_1, ..., U_n$ then prove that V is isomorphic to the external direct sum of $U_1, ..., U_n$.

- b) Prove that if $v_1, v_2, ..., v_n$ are in V then either they are linearly independent or some v_k is a linear combination of the preceding ones, v_1, v_2, \dots, v_{k-1} .
- 13. a) Prove that let V and W be vector spaces over the field F then Hom (V, W) is a vector space over F.

OR

- b) Prove that for given V is a finite-dimensional inner product space and W is a subspace of V, then $V = W + W^T$.
- 14. a) Prove that for given A and B are two square matrices, then the matrices AB and BA have the same characteristic roots.

- b) Prove that the Matrix $A = \begin{bmatrix} 3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ a satisfies Cayley-Hamilton theorem, also find the matrix A^{-1} .
- 15. a) Given V is a vector space over F then for $S, T \in A(V)$. Prove that.
 - $1. r(ST) \le r(T)$
 - $2. r(TS) \le r(T)$
 - $3. r(ST) \le r(TS) = r(T)$ for S regular in A(V).

b) Prove that for given $T, S \in A(V)$ and if S is regular, then T and STS^{-1} have the same minimal polynomial.

> Z-Z-Z END