Cont...

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Fifth Semester)

Branch - MATHEMATICS

ALGEBRA

Time: Three Hours				Maximum: 50 Marks	
		ALL	SECTION-A (5 Marks) Answer ALL questions questions carry EQUAL marks	$(5 \times 1 = 5)$	
1	(i	σ maps S onto S, ther) one-to-one ii) bijective	σ is (ii) onto (iv) surjective		
2	(i	$\begin{cases} a \in G, a^m = e, \text{ then } \\ O(a)/m \\ O(a)/m + 1 \end{cases}$	(ii) $O(m)/a$ (iv) $O(m+1)/a$		
3	(i	f H,K are subgroups of i) Proper subgroup iii) normal subgroup	f the abelian group G, then HK is (ii) subgroup (iv) abelian	of G.	
4	n (i	ring is said to be a nultiplication. i) integral domain iii) commutative ring	if its non zero elements for (ii) Euclidean ring (iv) division ring	m a group under	
5	(The units in a commutati) a group iii) an abelian group	tive ring with a unit element form (ii) a subgroup (iv) a normal group		
SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)					
6	a b		I, and $\mu: U \to V$, then $(\sigma \circ \tau)\mu = \sigma \circ (\tau)$ OR pty subset H of the group G is a su		
7	a	$G/_N$, $\varphi(x) = Nx$, $\forall x \in G$. Then prove that φ is a homomorphism of G onto $G/_N$.			
	b	Prove that N is a nor	rmal subgroup of G iff $gNg^{-1} = N$,	$\forall g \in G.$	
8	a	Prove that $\mathcal{I}(G) \cong G$	$G/_N$. OR		
	b	then H is a normal s	order 99 and suppose that H is a sububgroup of G.		
9	a		or all $a, b \in R$, then prove that $(-a)$ OR	(-b) = ab.	
	b	If φ is a homomorph	hism of R into R', then $\varphi(0) = 0$.	Cont	

10 a Prove that a Euclidean ring possesses a unit element.

OR

b Define Integral Domain.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Prove that the relation $a \equiv b \mod H$ is an equivalence relation.

OR

- b Show that for all $a \in G$, $Ha = \{x \in G | a \equiv x \mod H\}$.
- 12 a If H and K are finite subgroups of G of orders O(H) and O(K), then prove that $O(HK) = \frac{O(H).O(K)}{O(H \cap K)}$.
 - b If G is abelian of order O(G) and $p^{\alpha}/O(G)$, $p^{\alpha+1} \nmid O(G)$ then prove that there is a unique subgroup of G of order p^{α} .
- 13 a State and prove Cayley's theorem.

OR

- b Prove that $O(A_n) = \frac{n!}{2}$.
- 14 a If φ is a homomorphism of R into R' with kernel $I(\varphi)$, then prove that (i) $I(\varphi)$ is a subgroup of R under addition (ii) If $a \in I(\varphi)$, $r \in R$ then both $ar, ra \in I(\varphi)$.
 - b If R is a ring, then for all $a, b \in R$, then prove that (i)a0 = 0a = 0, (ii)a(-b) = (-a)b = -(ab), (iii)(-1)a = -a and (iv)(-1)(-1) = 1.
- Let R be an Euclidean ring and let A be an ideal of R, then prove that there exists an element $a_0 \in A$ such that A consists exactly of all a_0x as x ranges over R.
 - b The ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring R iff a_0 is a prime element of R prove.

Z-Z-Z

END