PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Sixth Semester)

Branch - MATHEMATICS

			GRAPH THE	ORY	
Time: Three Hours			Maximum: 50 Marks		
			SECTION-A (5	Marks)	*
			Answer ALL qu		
		ALL qu	estions carry EQ	UAL marks	$(5 \times 1 = 5)$
1		oh G is said to be ices in G,	graph if there	e is atleast one pa	ath between every pair
		Disconnected Components	(ii) cor (iv) tree		
2	Every non trivial tree has atleast two vertices of degree				
_	(i)		(ii) 0	<i></i>	_
		Same	(iv) 2		
3	K is	agraph			
5		Planar	(ii) no	n-planar	
	. ,	Non-complete	(iv) Tre	-	
1					
4		reduced incidence m		on-circuit	
		Singular Non-singular			
_	1.0		, , , , , , , , , , , , , , , , , , , ,		we hath agual to zara
5	is a vertex in which the in degree and the out degree are both equal to zero. (i) Pendent vertex (ii) complete vertex				
		Null vertex		lated vertex	
	(111)	Ivuii vertex	(17) 150	inton voitor	
			SECTION - B (1	5 Marks)	
			Answer ALL Q		
		ALL Q	uestions Carry E	QUAL Marks	$(5 \times 3 = 15)$
6	a	Show that the number of vertices of odd degree in a graph is always even. OR			
	b	Explain operation	s on graphs.		
7 a Prove that a graph G with n vertices, n-1 edges and OR				no circuits is connected.	
	b	Every connected	graph has at least	one spanning tre	e. Justify this statement.
8	a	Prove that Kuratowski's second graph is also non-planar. OR			
	b	Provide an examp	le of a graph which	ch is both Euleria	an and planar.
9	a	If A(G) is an incidence matrix of a connected graph G with n vertices then prove that the rank of A(G) is n-1. OR			
	b	Explain any three	observations of p	ath matrix	
10	a	(i) Examine equivalence relations with examples. OR			
	h	Discuss about thre	ee observations o	n the properties	of adjacency matrix of a

digraph.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a A connected graph G is an Euler graph⇔iff all vertices of G are of even degree. Analyse this statement.

OR

- Show that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- (i) Prove that every tree has either one or two centers.(ii) Prove that there is one and only path between every pair of vertices in a tree T.

OR

- b Prove that a tree with n vertices has n-1 edges.
- 13 a State and prove Euler's formula for a connected planar graph.
 - b Prove that the complete graph of five vertices is non-planar.
- 14 a If B is a circuit matrix of a connected graph G with e edges and n vertices, then prove that Rank of B= e-n+1.

If A is circuit matrix and B is incidence matrix, prove that $A.B^T=B.A^T=0$. (where T denotes transposed matrix).

15 a Describe the types of Digraph with illustrations.

b

OF

b Prove that the determinant of every square sub matrix of A, the incidence matrix of a digraph is 1,-1 or 0.

Z-Z-Z

END