PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - MATHEMATICS

MODERN ALGEBRA

	MODERI AEGEDICI
Time:	Three Hours Maximum: 50 Marks
	SECTION-A (5 Marks)
	Answer ALL questions
	ALL questions carry EQUAL marks $(5 \times 1 = 5)$
1.	If p is a prime number and a is any integer, then $a^p \equiv a \mod p$ this theorem stated by
	i) Euler ii) Lagrange's iii) Modulo iv) Fermat
2.	If G is a group, N a normal subgroup of G, then $G N$ is also a group. It is called theof G by N.
	i) Normal subgroup ii) Abelian group iii) Quotient group iv) Subgroup
3.	Any group of order p has subgroups. i) P ii) P+1 iii) P-1 iv) trivial
4.	A is a commutative division ring. i) Field ii) Commutative ring. iii) Division ring iv) Integral domain
5.	Every can be imbedded in a field. i) Field ii) Commutative ring iii) Division ring iv) Integral domain
	SECTION - B (15 Marks)
	Answer ALL Questions ALL Questions Carry EQUAL Marks $(5 \times 3 = 15)$
6 .a)	Prove that If H is a nonempty finite subset of a group G and H is closed under multiplication, then H is a subgroup of G. (OR)
b)	Prove that If G is a group, then For all $a, b \in G$, $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.
	Prove that If H and K are finite subgroups of G of orders o(H) and o(K), respectively, then $o(HK) = \frac{o(H)o(K)}{o(H\cap K)}$ (OR)
b)	Prove that If G is a finite group and N is a normal subgroup of G, then $o(G/N) = o(G)/o(N)$.
8.a)	Prove that every permutation is the product of its cycles. (OR)
b)	Prove that let G be a group and ϕ is an automorphism of G. If $a \in G$, if $o(a) > 0$, then $o(\phi(a)) = o(a)$.
9.a)	Prove that a finite integral domain is a field. (OR)
b)	Define (i) zero-divisor (ii)integral domain (iii) field
10.a)	Prove that let R be a Euclidean ring. Then every element in R is either a unit in R

or can be written as the product of a finite number of prime elements of R.

and R itself. Then R is a field

b) Prove that let R be a commutative ring with unit element whose only ideals are (0)

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

- 11. a) Let G be the set of all 2 x 2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are real numbers, such that $ad - bc \neq 0$.
 - Define group with 2 examples
 - Prove that G with matrix multiplication is not abelian? (ii)

- b) (i) Prove that If G is a finite group and $a \in G$, then o(a)/o(G).
 - (ii) Prove that If G is a finite group and $a \in G$, then $a^{o(G)} = e$.
- 12. a) Prove that Let ϕ be a homomorphism of G onto G with kernel K. Then $G/K \approx \tilde{G}$.
 - b) State and Prove Sylow's theorem for Abelian Groups.
- 13. a) Prove that Every group is isomorphic to a subgroup of A(S) for some appropriate S. (OR)
 - b) Prove that if G is a group, then $\mathcal{A}(G)$, the set of automorphisms of G, is also a
- 14. a) Prove that J_p is a field. Given J_p is the ring of integers mod p, p is a prime.
 - b) If R is a ring, thenfor all a, b ∈ R

1.a0 = 0a = 0.

2.a(-b) = (-a)b = -(ab).

3.(-a)(-b) = ab. If in addition, R has a unit element 1, then

4.(-1)a = -a.

5.(-1)(-1) = 1.

15. a) Prove that J[i] is a Euclidean ring.

b) State and Prove Unique Factorization Theorem.

END