PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Third Semester)

Branch - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS & FOURIER TRANSFORMS

Time: Three Hours			Maximum: 50 Marks
		Answer A	N-A (5 Marks) ALL questions as carry EQUAL marks (5 x 1 = 5)
1	z = c (i) z	ax + by + ab is = $px + qy + pq$	by eliminating the constants from (ii) $z = px + qy - pq$ (iv) $z = px - qy$
2	If $u_{xx} + x^2 u_{yy} = 0$ then the give (i) Parabolic (iii) Hyperbolic		(ii) Eliptic (iv) Mixed type
3	If f (i) f (iii)	f(-x) is an even function then $f(-x) = -f(x)f(-x) = -1/f(x)$	$\frac{(ii) f(-x) = f(x)}{(iv) 0}$
4	(i) e	Fourier cosine transform of $-w^2/2$ $e^{w^2/2}$	$e^{-x^2/2} = $
5	If $\partial u/\partial t = 0$ then the heat equation (i) Diffusion (iii) Wave		tion becomes equation. (ii) Laplace (iv) Poisson
		Answer	N - B (15 Marks) ALL Questions ons Carry EQUAL Marks (5 x 3 = 15)
6	a Form the partial differential equation by eliminating the arbitrary function from $f(x + y + z, x^2 + y^2 + z^2) = 0$. OR		
	b Fi	nd the complete integral of	$p^2 + q^2 = x + y.$
7		OR	e equation $u_{xx} + 2u_{xy} + \sin^2(x)u_{yy}u_y = 0$.
	b So	olve $(D^2 + 5D + 6)u = e^x$	

Find the Fourier coefficient a_n of the periodic function

 $f(x) = |x| \text{ for } -\pi < x < \pi.$

8 a

b

Find the Fourier series of the function $f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases}$ and L=2. 9 a

Consider the periodic rectangular wave
$$f_L(x)$$
 of period $2L > 2$ given by
$$f(x) = \begin{cases} 0 & \text{if } -L < x < -1 \\ 1 & \text{if } -1 < x < 1 \\ 0 & \text{if } 1 < x < L \end{cases}$$
OR

- Find the Fourier transform of xe^{-x^2} . b
- 10 Find the temperature u(x, t) in a laterally insulated copper bar 80 cm long if the initial temperature is $100\sin(\pi x/80)^{\circ}$ C and the ends are kept at 0°C. How long will take for the maximum temperature in the bar to drop to 50°C? Calculate the physical data for copper: density 8.92 g/cm³, specific heat $0.092cal/(g^{\circ}C)$, thermal conductivity $0.95cal(cm\ sec^{\circ}C)$. OR
 - b Solve the heat equation $\frac{\partial u}{\partial t} = c^2 \partial^2 u / \partial x^2$, u(x, 0) = f(x), $(-\infty < x < \infty)$, where f(x) is the given initial temperature of the bar.

SECTION -C (30 Marks)

Answer ALL questions ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

- Find the general integral of the linear PDE $pz qz = z^2 + (x + y)^2$. 11 a
 - Find the complete integral of the PDE $z^2 = pqxy$. b
- Reduce the equation $(1 + x^2)u_{xx} + (1 + y^2)u_{yy} + xu_x + yu_y = 0$ 12 to a canonical form.

- Solve $(D^2 + 16)u = e^{-3x} + \cos 4x$. b
- Find the Fourier series of the given function $f(x) = x^2$, $(-\pi < x < \pi)$ 13 a which is assumed to have the period 2π .

OR

- Find the Fourier series of the given function $f(x) = x + \pi$, $(-\pi < x < \pi)$ b and $f(x + 2\pi) = f(x)$.
- Find the Fourier cosine transform of $\mathcal{F}_c(e^{-ax})$ of $f(x) = e^{-ax}$, where a > 0. 14
 - Find the Fourier transform of f(x) = 1 if |x| < 1 and f(x) = 0b otherwise.
- Find the temperature in a laterally insulated bar of length L assuming that 15 a whose ends are insulated.

$$f(x) = \begin{cases} x & \text{if } 0 < x < \frac{L}{2} \\ L - x & \text{if } \frac{L}{2} < x < L \end{cases}$$
OR

Solve the temperature in the infinite bar if the initial temperature is given b below by the method of convolution. $f(x) = \begin{cases} U_0 = const & if |x| < 1\\ 0 & if |x| > 1 \end{cases}$

$$f(x) = \begin{cases} U_0 = const & \text{if } |x| < 1\\ 0 & \text{if } |x| > 1 \end{cases}$$