Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Fifth Semester)

Branch - MATHEMATICS

Time: Three Hours Maximum: 50 Marks	
SECTION-A (5 Marks)	
Answer ALL questions	
ALL questions carry EQUAL marks $(5 \times 1 = 5)$	
1 For any set A, A is at most countable if A is	
(a) finite (b) countable (c) finite and countable (d) finite or countable	
2 The set $P = \bigcap_{n=1}^{\infty} E_n$ is called the set	
(a) Cantor (b) countable (c) closed (d) compact	
(c) closed (d) compact 3 A metric space in which every Cauchy sequence converges is said to be	
(a) complete (b) closed	
(c) convergent (d) Cauchy	
4 A mapping f of a set E into R^k is said to be bounded if there is a real number M such that for all $x \in E$	
(a) $ f(x) < M$ (b) $ f(x) \le M$	
(c) $ f(x) > M$ (d) $ f(x) \ge M$	
Suppose f is differentiable in (a, b) and $f(x) \ge 0$, for all $x \in (a, b)$ then f is	
in (a, b)	
(a) constant (b) monotonically increasing (c) monotonically decreasing (d) not continuous	
SECTION - B (15 Marks)	
Answer ALL Questions	
ALL Questions Carry EQUAL Marks $(5 \times 3 = 15)$	
6 (a) Let $\{E_n\}$, n=1,2,3, be a sequence of countable sets and $S = \bigcup_{n=1}^{\infty} E_n$. Then	
prove that S is countable.	
(OR) (b) If P is a limit point of a set E, then prove that every neighborhood of P	
contains infinitely many points of E.	
7 (a) If E is an infinite subset of a compact set K, then prove that E has a limit point in K. (OR)	
(b) A subset E of the real line R^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$ and $x < z < y$, then prove that $z \in E$	
property, if web, yeb and her y, non-prove many eb	
8 (a) Suppose $\{S_n\}$ is monotonic. Then prove that $\{S_n\}$ converges if and only if it is bounded	1.
(OR)	
(b) State and prove Root Test.	
9 (a) Suppose f is continuous mapping of a compact metric space X into metric	
space Y. Then prove that $f(X)$ is compact.	

(OR)

- (b) Suppose f is a continuous 1-1 mapping of a compact metric space X onto metric space Y. Then the inverse mapping f⁻¹ defined on Y by f⁻¹(f(X)) = x(x ∈ X) is continuous mapping Y onto X.
- 10 (a) If f and g are continuous real functions in [a, b] which are differentiable in (a,b), then prove that there is a point $x \in (a,b)$ at which

[f(b)-f(a)]g'(x) = [g(b)-g(a)]f'(x)

(OR)

(b) Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then prove that there is a point $x \in (a,b)$ such that $f'(x) = \lambda$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11 (a) (i) Let A be the set of all sequences whose elements are the digits 0 and 1. Then prove that A is uncountable.
 - (ii) Define Metric space.

(OR)

- (b) (i) Prove that every neighborhood is an open set.
 - (ii) Suppose $Y \subset X$. Prove that a subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.
- 12 (a) Prove that every k-cell is compact.

(OR)

- (b) State and prove Weierstrass theorem.
- 13 (a) Suppose $\{s_n\}$, $\{t_n\}$ are complex sequences, and $\lim_{n\to\infty}s_n=s$, $\lim_{n\to\infty}t_n=t$. Then Prove that
 - (i) $\lim_{n \to \infty} (s_n + t_n) = s + t$
 - (ii) $\lim_{n\to\infty} cs_n = cs$, $\lim_{n\to\infty} (c+s_n) = c+s$, for any number c
 - (iii) $\lim_{n\to\infty} s_n t_n = st$
 - (iv) $\lim_{n\to\infty} \frac{1}{s_n} = \frac{1}{s}$, provided $s_n \neq 0$ (n=1,2,3...) and $s \neq 0$.

(OR)

- (b) (i) Define a power series.
 - (ii) State and prove Ratio test.
- 14 (a) Prove that a mapping f of a metric space X into metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.

(OR)

- (b) Let f be a continuous mapping of a compact metric space X into metric space Y. Then prove that f uniformly continuous on X.
- 15 (a) State and prove L' Hospital's rule.

(OR)

(b) State and prove Taylor's theorem.