PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Third Semester)

Branch - MATHEMATICS

MATHEMATICAL STATISTICS - I

Ti	me: Three Hours	Iviaxi	mum. 30 marks
	SECTI	ON-A (5 Marks)	
	Answe	r ALL questions	
		ons carry EQUAL marks	$(5 \times 1 = 5)$
1	The numerical evaluation of a	a chance factor of an experimen	nt is called
	(i) Random variable	(ii) Event	
	(iii) Probability	(iv) Axioms	

- A variable whose value is determined by an outcome of a random experiment is called
 - (i) Continuous random variable
- (ii) Discrete random variable
- (iii) Random variable
- (iv) Pseudo variable
- 3 The formula for moment generating function in continuous random variable
 - (i) $E(e^{tx}) = \sum_{x=0}^{\infty} e^{tx} P(x)$ (ii) $E(e^{tx}) = \sum_{x=0}^{\infty} e^{tx} f(x)$ (iii) $E(e^{tx}) = \sum_{x=0}^{\infty} e^{tx} f(x)$ (iv) $E(e^{tx}) = \sum_{x=0}^{\infty} e^{tx} P(x)$
- 4 The shape of the normal distribution is
 - (i) Symmetric
- (ii) Circle
- (iii) Curve
- (iv) Bell
- 5. The number of normal equations involved in fitting a straight line trend.
 - (i) 1
- (ii)2
- (iii) 3
- (iv) 4

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

- 6 a For a fixed B with P(B)>0, then prove that P(A/B) is a probability function.
 - b For any three events A,B, and C then prove that $P\left[\frac{A \cup B}{C}\right] = P\left[\frac{A}{C}\right] + P\left[\frac{B}{C}\right] P\left[\frac{A \cap B}{C}\right]$
- 7 a A continuous random variable X has the probability function $f(x) = k(1+x), 2 \le x \le 5$. Find P(X < 4)

OR

b A random variable X has the following probability distribution.

random varia	IUIC A	las tile	TOHOV	1116 1	Couci	
x	-2	-1	0	1	2	3_
p(x)	0.1	k	0.2	2k	0.3	k

- Find (i) The value of 'k' (ii) Evaluate P(X<2) and P(-2<x<2) (iii) Find the cumulative distribution of X and (iv) Evaluate the mean of X.
- 8 a The p.m.f of a RV X, is given by $p(X = j) = \frac{1}{2^j}$, j = 1,2,3... Find MGF, mean and variance.

OR

b If the joint pdf of (X,Y) is given by f(x,y)=2-x-y in $0 \le x \le y \le 1$, find E(X)

Cont...

The mean and variance of the binomial distribution are 4 and 4/3 respectively. 9 a Find $P(X \ge 1)$

- In a Poisson frequency distribution, frequency corresponding to 3 successes is b 2/3 times frequency corresponding to 4 successes. Find the mean and standard deviation of the distribution.
- Explain the lottery method of simple random sampling. 10 a

Fit a straight line for the following data. b

-	X	2	3	5	8	10
	Y	5	6	10	18	21

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

State and prove Bayes's theorem. 11 a

OR

- The odds against manager X setting the wage dispute with the workers are 8:6 b and odds in favour of manager Y setting the same dispute are 14:16 (i) what is the chance that neither settles the dispute, if they both try, independently of each other? (ii) what is the probability that the dispute will be settled?
- Find the moment generating function of the random variable 'X' having p.d.f 12 a

Let X be a random variable with the following probability distribution b

$$x: -3 6 9$$

 $P(x=x): 1/6 1/2 1/3$

Find E(X) and $E(X^2)$ and using the laws of expectations, evaluate $E(2X+1)^2$

The joint probability mass function of X, Y is given by 13 a P(X,Y) = K(2x+3y), x = 0,1,2, y = 1,2,3 Find all the marginal and conditional distributions.

If the joint probability density function of two dimensional random variable X, Y is given by $f(x, y) = \begin{cases} K(6-x-y), & 0 < x < 2, & 2 < y < 4 \\ 0 & other wise \end{cases}$ b

The value of K (ii) P (x < 1, y < 3) (iii) P (x < 1 / y < 3)Find (i)

Derive the mean and variance of the density function 14 a

$$f(x) = \begin{cases} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{x^2}{\sigma} \left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty \\ 0, \text{ otherwise} \end{cases}$$

OR

- Show that for t- distribution with n d.f mean deviation about mean is given b $\frac{\sqrt{n} \Gamma[(n-1)/2]}{\sqrt{\pi} \Gamma(n/2)}$
- Explain the stratified and systematic sampling procedure. 15 a

Fit an exponential curve of the form $Y = ab^x$ to the following data b

-	X	1	2	3	4	5	6	7	8
	Y	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1