PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2021

(First Semester)

Branch - MATHEMATICS

CALCULUS - I

Maximum: 50 Marks Time: Three Hours

	SECTION-A		
	Answer ALL	questions	(5 - 1 - 5)
A	LL questions carry I	EQUAL marks	$(5 \times 1 = 5)$
A parametrization $r(t)$	is called	on the interval I if	r' is continuous an
$r'(t) \neq 0$ on I	ii) regular		iv) constant
2. A function of two vari	iables is called	at (a, b) if li	$m_{(x,y)\to(a,b)} f(x,y)$
f(a,b). i) analytic	ii) differentiable	iii) continuous	iv) concentric
3. Two surfaces are called at a point of intersection if their normal lines are			
nemendicular at that p	oint.	iii) orthogonal	
A If $m < f(x, y) < M$ for all (x, y) in D, then $mA(D) \le \iint_D f(x, y) dA$			
i) < MA(D)	ii) < mA(D)	iii) $\leq mA(D)$	$iv) \leq MA(D)$
5. The triple riemann sum i) $\sum_{l=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f$ iii) $\sum_{l=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f$	$(x_{ij}^*, y_{ij}^*, z_{ij}^*) \Delta V$	ii) $\sum_{l=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(i)$ iv) $\sum_{l=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(i)$	$(x_{ij}, y_{ij}, z_{ij}) \Delta V$ $(x_{ij}, y_{ij}, z_{ij}) \nabla V$
	SECTION - B Answer ALL	(15 Marks) Questions EQUAL Marks	$(5 \times 3 = 15)$
	-Cd by the restor	function $r(t) = (1 +$	t.2 + 5t1 + 6t

- 6. a) Describe the curve defined by the vector function r(t) = (1 + t, 2 + 5t,
 - b) If $r(t) = \langle f(t), g(t), h(t) \rangle = f(t)i + g(t)j + h(t)k$ where f, g and h are differentiable functions then prove that $r'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)i +$ g'(t)j + h'(t)k.
- 7. a) Find the level surfaces of the function $f(x, y, z) = x^2 + y^2 + z^2$.
 - b) Evaluate $\lim_{(x,y)\to(1,z)} (x^2y^3 x^3y^2 + 3x + 2y)$.
- 8. a) If $z = e^x \sin y$, where $x = st^2$ and $y = s^2 t$, find $\frac{dz}{ds}$ and $\frac{dz}{dt}$.

- b) Find the extreme values of $f(x, y) = y^2 x^2$.
- 9. a) Use midpoint rule with m=n=2 to estimate the value of the integral $\iint_R (x x)^2 dx$ $3y^2$) dA, where $R = \{(x, y) | 0 \le x \le 2, 1 \le y \le 2\}$.
 - b) Find the volume of the solid S that is bounded by the elliptic paraboloid x^2 + $2y^2 + z = 16$, the planes x=2 and y=2, and the three coordinate planes.
- 10. a) Evaluate $\iint_B e^{(x^2+y^2+z^2)^{\frac{3}{2}}} dV$, where B is the unit ball: $B = \{(x,y,z) | x^2 + y^2 + z^2 \le 1\}$.
 - b) Find cylindrical coordinates of the point with rectangular coordinates (3,-3,-7).

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

11. a) Find the curvature of the twisted cubic $r(t) = (t, t^2, t^3)$ at a general point and at (0,0,0).

OR

- b) Find the unit normal and binomial vectors for the circular helix r(t) = cost i + cost isint j + tk.
- 12. a) Find the second partial derivative of $f(x, y) = x^3 + x^2y^3 2y^2$.
 - b) Show that $f(x, y) = xe^{xy}$ is differentiable at (1,0) and find its linearization there. Then use it to approximate f(1.1, -0.1).
- 13. a) A rectangular box without a lid is to be made from $12m^2$ of cardboard. Find the maximum volume of such a box.

- b) Find the equations of the tangent plane and normal line at the point (-2,1,-3) to the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$.
- 14. a) Evaluate $\iint_D xy \, dA$, where D is the region bounded the line y = x 1 and the parabola $y^2 = 2x + 6$.

- b) Find the volume of the solid bounded by the plane z=0 and the paraboloid $z = 1 - x^2 - y^2$
- 15. a) Evaluate $\iint_E z \, dV$, where E is the solid tetrahedron bounded by the four planes x=0, y=0, z=0, and x+y+z=1.

b) Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2 + y^2) dz dy dx$.

Z-Z-Z

END