22STP312

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2023

(Third Semester)

Branch - STATISTICS

HYPOTHESES TESTING

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1 The upper bound for the probability of type I error, selected by the statistician, is called ----- of the test.
 - (i) level of confidence
- (ii) level of the significance

(iii) power

- (iv) critical value
- 2 A test function $\phi(x)$ is said to be invariant under a group G of transformations, if $g \in G$ and.
 - (i) $\varphi\{g(x)\} = \varphi(x)$
- (ii) $\varphi\{g(x)\} < \varphi(x)$
- (iii) $\varphi\{g(x)\} > \varphi(x)$
- (iv) $\varphi\{g(x)\}\neq\varphi(x)$
- 3 The LR test criterion is a function of
 - (i) the consistency
- (ii) the unbiasedness
- (iii) the sufficient statistics
- (iv) efficient
- 4 In SPRT if $\lambda_m \leq B$, we terminate the process by
 - (i) accepting H₀

- (ii) rejecting H₀
- (iii) either (i) or (ii)
- (iv) none of these
- 5 If U is the sign test, then the expected value of statistic U is
 - (i) $[(2n_1n_2)/(n_1+n_2)]+1$
- (ii) $[(2n_1n_2)/(n_1+n_2)] 1$
- (iii) $[(2n_1n_2)/(n_1-n_2)]+1$
- (iv) $[(2n_1n_2)/(n_1-n_2)] 1$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6 a Explain type I and type II errors.

OR

- b Discuss the randomized test.
- 7 a Write a note on UMP test.

OR

- b How do you test one parameter exponential family of distributions.
- 8 a State the properties of LR test.

OR

- b Explain asymptotic distribution of LR test.
- 9 a What is SPRT? State its boundary conditions.

OR

- b Discuss about the ASN of SPRT.
- 10 a Distinguish between parametric and non- parametric test.

OR

b Write the procedure for run test.

Cont...

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a State N.P Lemma and prove the existence part.

OR

b If $x \ge 1$ is the critical region for testing H_0 : $\theta = 2$ against the alternative H_1 : $\theta = 1$, on the basis of the single observation from the population, $f(x, \theta) = \theta e^{-\theta x}$, $0 \le x < \infty$ obtain the values of type I and type II errors.

12 a Under H₀:
$$X \sim f(x)$$
, where $f(x) =\begin{cases} \frac{1}{4}, & \text{if } 0 \le x < \frac{1}{2} \\ \frac{7}{4}, & \text{if } \frac{1}{2} \le x < 1 \end{cases}$

and
$$H_1: X \sim g(x)$$
, where $g(x) = \begin{cases} \theta e^{-\theta x} & \text{, } 0 < x < 1 \text{ and } \theta > 0 \\ 0 & \text{, otherwise} \end{cases}$

considering a sample observation x on X reject H_0 if $x < \frac{1}{10}$ or $x > \frac{9}{10}$, otherwise accept H_0 . Examine whether the test is unbiased.

OR

- b Show that one parameter exponential family has MLR property.
- 13 a If sufficient statistics exists then prove that LR test always function of the sufficient statistics.

OR

- b Explain the Chi-square test for goodness of fit.
- 14 a Prove that SPRT terminates with probability one.

OR

- b Obtain the OC function of SPRT.
- 15 a Describe Kolmogorov Smirnov test for one Sample problem.

OR

b Enumerate the application of median test with an example.

Z-Z-Z

END