PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2023

(Second Semester)

Branch - STATISTICS

ESTIMATION THEORY

Time: Three Hours

Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1. If $x_1, x_2...x_n$ be a random sample from $N(\mu, \sigma^2)$ population, the sufficient statistic for μ is
 - (a) $\sum (x_i \overline{x})^2$
- (b) $\frac{\overline{x}}{n}$

(c) $\sum x_i$

- (d) $\sum (x_i \overline{x})$
- 2. Cramer-Rao inequality with regard to variance of an estimator provides
 - (a) upper bound on the variance
- (b) lower bound on the variance
- (c) asymptotic variance of the estimator
- (d) simply variance
- 3. In estimating the parameter of a linear function, most commonly used method of estimation is
 - (a) maximum likelihood method
- (b) least square method
- (c) method of minimum chi-square
- (d) method of moments
- 4. Let $X_1, X_2, ..., X_n$ be iid from $B(\theta)$. Then conjugate prior distribution of (θ) is
 - (a) Gamma

(b) Beta first kind

(c) Normd

- (d) Gamma inverse
- 5. A confidence interval of confidence coefficient $(1-\alpha)$ is best which has
 - (a) smallest width
 - (b) vastest width
 - (c) upper and lower limits equidistant from the parameter
 - (d) one-sided confidence interval

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6 a) Derive the sufficient condition for the consistency of an estimator θ_n .

(OR)

- b) Explain the following (i) Sufficient (ii) Unbiasedness (iii) Consistency.
- 7 a) Establish Lehmann-Scheffe theorem. Explain the implications of the basic result.
 - b) Develop the method of constructing minimal sufficient statistics.
- 8 a) Distinguish between MVUE and UMVUE.

(OR

- b) Explain the method of moments.
- 9 a) Compare the relationship between sufficient statistic and maximum likelihood estimator.

(OR)

b) Explain the location and scale invariant estimators.

10 a) Construct a $100(1 - \alpha)\%$ confidence interval for the population proportion based on large sample.

(OR)

b) Distinguish between interval estimation and point estimation.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a) Discuss the criteria of point estimation.

(OR)

- b) Explain the properties of estimators.
- 12 a) State and prove the Cramer Rao inequality.

(OR)

- b) State and prove Rao Blackwell theorem.
- 13 a) Explain the method of maximum likelihood estimator.

(OR)

- b) Explain the minimum chisquare method and modified minimum Chisquare method.
- 14 a) Explain the method of Pittman estimator location of scale.

(OR)

- b) Explain the concepts of Baye's estimator and posterior Baye's estimator.
- 15 a) The two random samples are drawn from the normal population.

		The state of which in other than in ordinate						population.	
Sample – I:	25	53	47	34	56	60	55	58	
Sample – II:	55	45	58	60	70	50	43	69	

Obtain the 95% and 99% confidence interval for difference between two means.

(OR)

b) Explain the concepts of shortest length confidence interval.

Z-Z-Z END