Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Second Semester)

Common to Branches – COMPUTER SCIENCE & COMPUTER TECHNOLOGY

MATHEMATICS FOR COMPUTING - II

	Time: Three Hours Maximum: 50 Marks
	SECTION-A (5 Marks)
	Answer ALL questions ALL questions carry EQUAL marks $(5 \times 1 = 5)$
1	If a proposition is neither a tautology nor a contradiction, then it is called a (i) contingency (ii) conditional (iv) disjunction
2	The range of the function is the set of (i) images (ii) real numbers (iii) domain (iv) ordered pairs
3	A function f is invertible (inverse of f exists) if and only if f is a (i) conjunction (ii) bijection (iii) convex (iv) non-negative
4	A graph in which loops and parallel edges are allowed is called (i) simple graph (ii) multigraph (iii) pseudograph (iv) complete graph
5	A graph containing an Eulerian circuits is called an (i) Eulerian path (ii) Eulerian graph (iii) Hamiltonian path (iv) Hamiltonian circuits
	SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)
6	a Define conditional and biconditional prepositions with examples. OR
	b Construct a truth table: $(p \lor q) \rightarrow (p \land q)$.
7	a If P = {a, b, c} and Q = {r}, form the sets P × Q and Q × P. Are these two products equal. OR
	b Let $A = \{1,2,3\}$, $B = \{3,4\}$ and $C = \{4,5,6\}$. Find $A \times (B \cap C)$.
8	a Provide the 3 requirements, to say the two functions f and g as equal functions. OR
	b Find the domain and the range of the real function, $f(x) = 1/(x + 3)$.
9	a The number of vertices of odd degree in an undirected graph is even prove it. OR
	b If all the vertices of an undirected graph are each of odd degree k, then show that the number of edges of the graph is a multiple of k.

Cont...

10 a Find all the simple paths from A to f and all the circuits in the graph:

b Define Eulerian graph and Hamiltonian graph with example.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Explain the basic logical operations with examples.

OF

- b Check whether the following compound preposition are tautologies or contradiction, using truth table: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$.
- 12 a Prove that $(A C) \cap (C B) = \varphi$ analytically and graphically, where A, B, C are sets.

OR

- b If R is the relation on the set of ordered pairs of positive integers such that (a, b), (c, d) ∈ R whenever ad = bc, then show that R is an equivalence relation.
- 13 a Let f: $R \to R$: f(x) = 4x + 3 for all $x \in R$. Show that f is invertible and hence find f-1
 - b If f: A \rightarrow B and g: B \rightarrow C are invertible functions, then prove that g o f: A \rightarrow C is also invertible and (g o f) -1 = f-1 o g-1.
- 14 a State and prove Hand shaking theorem.

OR

b Determine whether the following graphs are isomorphic.

15 a In the following graph, there are 9 nodes. Check whether this graph is a Hamiltonian graph or not.

b Explain the following operations of graphs with examples.

(i)union (ii)intersection (iii) product