PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(First Semester)

Common to Branches - COMPUTER SCIENCE & COMPUTER TECHNOLOGY

MATHEMATICS FOR COMPUTING - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 1 = 10)$

ALL questions carry EQUAL marks (10 × 1 - 10)					
Module No.	Question No.	Question	K Level	СО	
	1	Rank of A = Rank of (A, B), then the system is a) consistent b) inconsistent c) either consistent (or) inconsistent d) neither consistent nor inconsistent	K1	CO1	
1	2	The sum of the Eigen values of $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ are $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ are $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	K2	CO2	
	3	In auxiliary equation, if the roots are real and equal then the solution is a) $(A + B)e^{mx}$ b) $(A + Bx)e^{mx}$ c) $(A - B)e^{mx}$ d) $(A - Bx)e^{mx}$	K1	CO1	
2	4	The partial differential equation formed from $z = (x + y) f(x^2 - y^2)$ is a) $px + qy = z$ b) $py + qx = z$ c) $py - qx = z$ d) $px - qy = z$	K2	CO2	
	5	Gaussian elimination method, original equations are transformed by usinga)Row operationsb)Column operationsb)Mathematical operationsb)Subset operation	K1	COI	
3	6	Gauss Seidal method is also termed as a method of a) Successive displacement b) Eliminations c) False Positions d) Iterations	K2	CO2	

Cont...

Page 2

22CMU103N / 22CMU103/ 22CTU103N/ 22CTU103

Cont...

4	7	Newton's forward difference formula gives $\left(\frac{d^{2}y}{dx^{2}}\right)_{x=x_{0}} = \underline{\hspace{1cm}}.$ a) $\frac{1}{h} \left(\Delta^{2}y_{0} - \Delta^{3}y_{0} + \frac{11}{12}\Delta^{4}y_{0} +\right)$ b) $\frac{1}{h^{2}} \left(\Delta^{2}y_{0} - \Delta^{3}y_{0} + \frac{11}{12}\Delta^{4}y_{0} +\right)$ c) $\frac{1}{h} \left(\Delta^{2}y_{0} + \Delta^{3}y_{0} + \frac{11}{12}\Delta^{4}y_{0} +\right)$ d) $\frac{1}{h^{2}} \left(\Delta^{2}y_{0} - \Delta^{3}y_{0} - \frac{11}{12}\Delta^{4}y_{0}\right)$	K1	CO1
	8	The Trapezoidal rule approximates the integral by the of n trapezoids. a) difference b) sum c) product d) cross product	K2	CO2
	9	The improved Euler method is based on the averages of a) lines b) chords c)slopes d) points	K1	CO1
5	10	If $y' = x + y$, $y(0) = 2$, then the value of (x_0, y_0) is $a)(1, 2)$ b) $(2, 1)$ c) $(0, 2)$ d) $(2, 0)$	K2	CO2

SECTION - B (35 Marks)

Answer ALL questions

Louestions carry EQUAL Marks $(5 \times 7 = 35)$

	ALL questions carry EQUAL Marks (5 × 7 - 35)				
Module No.	Question No.	Question	K Level	СО	
	11.a.	Find the rank of matrix $A = \begin{pmatrix} -2 & -1 & -1 \\ 12 & 8 & 6 \\ 10 & 5 & 6 \end{pmatrix}$		GOA	
1		(OR)	K2	CO4	
	11.b.	Illustrate the Eigen value of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$			
	12.a.	Solve $(D^2 - 3D + 2)y = e^{4x}$	K2	CO4	
2		∂z (OR)			
2	12.b.				

Cont...

3	13.a.	Solve the system of equation by Gaussian Elimination method. $2x+3y-z=5$, $4x+4y-3z=3$, $2x-3y+2z=2$. (OR) Solve the following systems of equation by Gauss- Jacobi methods $10x+2y+z=9$, $x+10y-z=-22$,	К3	CO4
	13.b.	-2x + 3y + 10z = 22.		
4	14.a.	From the following table of values of x and y obtain $\frac{dy}{dx}$ for $x = 1.05$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	К3	CO4
	(OR)			
	14.b.	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule by taking h=0.2.		
5	15.a.	Compute $y(0.3)$ taking $h = 0.1$ given $y' = y - \frac{2x}{y}$, $y(0)=1$ using Improved Euler's method.	K3	005
	(OR)			CO5
	15.b.	Find y(0.1) and y(0.2) by Modified Euler's method given that $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3\times10=30)$

Module No.	Question No.	Question	K Level	СО
1	16	Identify the following equations $2x - y + z = 7$, $3x + y - 5z = 13$, $x + y + z = 5$ are consistent and solve them.	К3	CO3
2	17	Solve $(D^2 - 3D + 2)y = \sin 2x$.	K3	CO3
3	18	Solve by Gauss–Jordan method $5x-2y+3z = 18$, $x+7y-3z = -22$, $2x-y+6z = 22$.	K3	CO5
4	19	Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rule	К3	CO4
5	20	Using Runge-Kutta method of fourth order to find $y(0.1)$ and $y(0.2)$ given that $\frac{dy}{dx} = \frac{2xy}{1+x^2} + 1, y(0) = 0$	К3	CO5