PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Second Semester)

Branch - STATISTICS

PROBABILITY THEORY / PROBABILITY & DISTRIBUTIONS-I

Time:	Three Hours	Maximum: 50 Ma	arks				
	N= M	A (5 Marks)					
	Answer Al ALL questions carry I	LL questions EOUAL marks	$(5 \times 1 = 5)$				
1.	The probability of all possible outcomes						
	(i) infinity	(ii) zero	ays equal to				
	(iii) one	(iv) none of the above					
2.	Two random variables are said to be inde	ependent if					
	(i) $E(XY) = 1$	(ii) $E(XY) = E(X) E(Y)$					
	(iii) $E(XY) = 0$	(iv) $E(XY) = any constant va$	alue				
3.	If an event has occurred and it is known is equal	that $P(B) = 1$, the conditional I	probability P(A B)				
	(i) P(A)	(ii) P(B)					
	(iii) Zero	(iv) One					
4.	4. The moment generating function of Bernoulli distribution is						
	(i) $(q+pe^t)^n$	(ii) $(q+pe^t)^{-n}$					
	(iii) $(q + pe^t)$	(iv) $(q + pe^{-t})$					
5.	If $E(Y X)$ is the conditional expectation of Y given $X=x$, then						
	(i) $E(XY) = E(X) E(Y X)$	(ii) $E(XY) = E(Y) E(Y X)$					
	(iii) $E(XY) = X E(Y X)$	(iv) $E(XY) = E[X E(Y X)]$					
		B (15 Marks)					
Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)							
			$(5 \times 3 = 15)$				
6. a) Define probability and write the axioms of probability.							
	b) Three coins are tossed simultaneously	R					
	(i) atleast one head (ii) Exactly		9				
7.	a) Explain random variable and sketch th		nction.				
	b) A random variable X has probability i						
	Values of X: -1 0 1						
	Probability: 0.2 0.3 0.5						
	Evaluate (i) E(3X+1) (ii)	$E(X^2)$					
8.	a) If the distribution of the random varia	ble (X,Y) is given by					
	(1, , , , , , , , , , , , , , , , , , ,						

 $for |x| \le 1, |y| \le 1$ Show that X and Y are not independent. otherwise

b) Define (i) Marginal Probability Distribution

(ii) Conditional Probability Distribution

9. a) Summarize about moment generating function and characteristic function.

OR

- b) A die is thrown repeatedly until either 2 or 3 is obtained. Show that the Probability Generating Function of the number of throws required is $\frac{s}{3-2s}$.
- 10. a) Compare conditional expectation and conditional variance.

OR

b) Let f(x,y) = 8xy, 0 < x < y < 1; f(x,y) = 0 elsewhere. Find E (Y|X=x).

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11. a) State and prove multiplication theorem of probability

OR

b) Suppose one person is selected at random from a group of 100 persons known to confirm the following patterns of political views.

	Communist	Socialist	Democrat	Total
Men	15	25	10	50
Women	20	15	15	50
Total	35	40	25	100

What is the probability that the man selected is a communist?

- 12. a) Describe (i) Discrete random variable
 - (ii) Continuous random variable

OR

b) Find the mean and variance of the probability function

$$p(x) = \begin{cases} \frac{2}{3} \left(\frac{1}{3}\right)^{x-1} & for \ x = 1,2,3 \\ 0 & otherwise \end{cases}$$

13. a) Given the pdf of a continuous random variable X as follows

$$f(x) = \begin{cases} kx(1-x) & for \ x = 1,2,3 \\ 0 & otherwise \end{cases}$$

Find k and the cumulative distribution function.

OR

b) The joint density function of a bivariate distribution is given by

$$f(x,y) = 4xy e^{-(x^2+y^2)}, x \ge 0, y \ge 0$$

Find the marginal and conditional probability density functions. Are x and y independent?

14. a) State and prove Tchebychev's inequality.

OR

b) The probability density function of the random variable X follows the probability law:

$$p(x) = \frac{1}{2\theta} \exp\left(-\frac{|x-\theta|}{\theta}\right), -\infty < x < \infty$$

Find M.G.F of X. Hence find E(X) and V(X).

15. a) Given two variates X₁ and X₂ with joint density function f (x₁, x₂), prove that the conditional mean X₂ (given X₁) coincides with (unconditional) mean only if X₁ and X₂ are independent.

OR

b) Given
$$f(x,y) = \begin{cases} xe^{-x(1+y)}, & x \ge 0, y \ge 0 \\ 0 & otherwise \end{cases}$$

Find E(XY) and E(Y|X). Show that E(Y) does not exist.