PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Second Semester)

Branch - STATISTICS

NUMERICAL METHODS

Time: Three Hours

2

Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1 W hat is the order of convergence in Newton-Raphson method? (i) 2 (ii) 3 (iii) 4 (iv) 1
 - Divided differences are useful when:
 - (i) Arguments are equally spaced
 - (ii) Arguments are unequally spaced
 - (iii) Arguments advance with unit intervals
 - (iv) Argument series are equally divided
- The best results are obtained from laplace everett's formula when: 3
 - (i) $u \le \frac{1}{3}$ and $v \ge \frac{1}{4}$
- (ii) $u \le \frac{1}{2}$ and $v \ge \frac{3}{4}$
- (iii) $u \le \frac{3}{4}$ and $v \ge \frac{1}{5}$
- (iv) $u \le \frac{3}{4}$ and $v \ge \frac{1}{4}$
- In deriving the trapezoidal formulae, the arc of the curve y = f(x) over each sub-interval 4 is replaced by its
 - (i) straight line
- (ii) ellipse

(iii) chord

- (iv) tangent line
- How many prior values are required to predict the next values in Milne's method? 5
 - (i) 4

(ii) 3

(iii) 2

(iv) 1

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Evaluate √142 using Newtons Raphson method. 6

- Find the real root of the equation $x^3 + x^2 1 = 0$, by iteration method. b
- 7 Using Newton's forward interpolation formula, find the polynomial f(x) satisfying the following data. Hence find f(2).

x:	0	5	10	15	
y:	14	379	1444	3584	

OR

Find y(2.25) using Newton's backward difference formula from the following data:

x:	1.00	1.25	1.50	1.75	2.00
y:	0.3679	0.2865	0.2231	0.1738	0.1353

a Interpolate by means of Gauss backward formula, the population of a town for the year 1974, given that

x:	1939	1949	1959	1969	1979	1989
y:	12	15	20	27	39	52

OR

Derive Bessel's formula.

Cont...

Explain the Newton's forward difference formula to get the derivative. 9

Evaluate $\int_{1+x^2}^{1} dx$ using Simpson's $3/8^{th}$ rule.

Using Euler's method find y(0.2) and y(0.4) from $\frac{dy}{dx} = x + y$, y(0) = 1 with 10 a h = 0.2.

State the special advantage of Runge-Kutta method over Taylor's method. b

SECTION -C (30 Marks) Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Using Horner's method find the root of the equation $2x^3 - 3x - 6 = 0$, correct to 3 decimal places.

Find the approximate root of $x \log_{10} x - 1.2 = 0$ by False position method

The following table gives same relation between steam pressure and temperature. Find the pressure at temperature 372.1°. 12 a

the pressure at temperature 372.1 . T: 361° 367° 378° 387° 399°									
					399°				
T:	301	307	1010	2125	244.2				
P:	154.9	167.0	191.0	212.3	244.2				
	1								

Using Lagrange's interpolation, calculate the profit in the year 2000 from the following b data:

lata:	1997	1000	2001	2002
Year:	1991	1777	150	248
Profit in lakhs of Rs.:	43	65	159	240

From the following table, estimate $e^{0.644}$ using Stirling's formula. 13 a

From the following table, estimate e using states								
From the following the				0.64	0.65	0.66	0.67	
Tr	0.61	0.62	0.63	0.64	0.05		1.0542	
1	0.01	2.500	1 0776	1 8964	1.9155	1.9347	1.9344	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.8589	1.8770	1.070				
1				OD				

Find the value of θ given $f(\theta) = 0.3887$, where $f(\theta) = \int_0^{\theta} \frac{1}{\sqrt{1 - \frac{1}{2} \sin^2 \theta}} d\theta$ using the

following table.

IOHOWII	ig more.			
A:	210	23°	25°	
$f(\theta)$:	0.3706	0.4068	0.4433	
1 (0)		-		

Find the first two derivatives of $(x)^{1/3}$ at x = 50 and x = 56 given the table below:

Find the first t	wo deriva	atives of	$(x)^{n}$ at x	53	54	55	56
x 1/3	3 6840	3.7804	3.7325	3.7563	3.7798	3.8030	3.8259
$y = x^{1/3}$	3.00.0		0	R	π,		() Tuon

By dividing the range into ten equal parts, evaluate $\int_0^{\pi/2} sinx dx$ by (a) Trapezoidal rule (b) Simpson's rule. Verify your answer with integration.

15 a Using Taylor's series method, find y(1.1) and y(1.2) correct to four decimal places given $\frac{dy}{dx} = xy^{1/3}$ and y(1) = 1.

Using Milne's method find y(2), if y(x) is the solution of $\frac{dy}{dx} = \frac{1}{2}(x+y)$ given y(0) = 2, y(0.5) = 2.636, y(1) = 3.595 and y(1.5) = 4.968. END