PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Fourth Semester)

Branch - STATISTICS

STATISTICAL INFERENCE – I

Maximum: 50 Marks Time: Three Hours

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1. If an estimator Tn of population mean is
 - (i) sufficient
- (ii) efficient
- (iii) consistent
- (iv) unbiased
- 2. Rao-Blackwell theorem enables us to obtain minimum variance unbiased estimator through:
 - (i) unbiased estimators
- (ii) complete statistics
- (iii) efficient statistics
- (iv) sufficient statistics
- 3. Method of minimum Chi-square for the estimation of parameters utilizes:

 - (i) Chi-square distribution function (ii) Pearson's Chi-square statistic
 - (iii) contingency table
- (iv) All the above
- 4. The most pragmatic approach for determining $(1-\alpha)$ per cent confidence interval is to find out:
 - (i) zero width confidence interval
 - (ii) equal tail confidence coefficient interval
 - (iii) a confidence interval such that the combined area of both the tails is equal to α
 - (iv) none of the above
- 5. To test the randomness of a sample, the appropriate test is
 - (i) run test
- (ii) sign test
- (iii) median test
- (iv) U test

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6. (a) Discuss the concept of efficiency and sufficiency.

- (b) x1,x2,....xn is a random sample from a normal population $N(\mu, 1)$. Show that $t = \frac{1}{n} \sum xi^2$ is an unbiased estimator of $\mu^2 + 1$.
- 7. (a) A random sample (X₁, X₂,X₃,X₄,X₅) of size 5 is drawn from a normal population with unknown mean μ . Consider the following estimators to estimate μ (i) $t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$ (ii) $t_2 = \frac{X_1 + X_2}{2} + X_3$

(i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$
 (ii) $t_2 = \frac{X_1 + X_2}{2} + X_3$

(b) Let $X_1, X_2, ... X_n$ be a random sample from a population with pdf $f(x, \theta) = \theta x^{\theta-1}$; 0 < x < 1, $\theta > 0$ show that $t_1 = \prod_{i=1}^n x_i$ is sufficient for θ .

18STU11 Cont...

8. (a) Explain the methods of Minimum Chi-square estimation.

OR

- (b) Explain the method of moments.
- 9. (a) Explain about the Bayes' estimator.

OR

- (b) Distinguish between the prior and posterior distribution.
- 10. (a) Write down the concept of order statistics.

OR

(b) Explain Sign test.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11. (a) State and prove Cramer Rao Inequality.

OR

- (b) Explain the concept of consistent estimator and also show that in sampling from a $N(\mu, \sigma^2)$ population, the sample mean is a consistent estimator of μ .
- 12. (a) State and prove Rao Blackwell theorem.

OR

- (b) State and prove Neyman Fisher factorization theorem.
- 13. (a) Explain the Properties of Maximum Likelihood Estimators.

(OR

- (b) In a random sampling from normal population $N(\mu, \sigma^2)$, find the maximum likelihood estimators for (i) μ when σ^2 is known (ii) σ^2 when μ is known.
- 14. (a) Define prior and posterior distributions with suitable notations. Define Bayes Risk of an estimator and obtain two different expressions for it.

OR

- (b) Obtain 100(1-α)% confidence limits for the difference of means in sampling from two normal populations.
- 15. (a) Describe Wilcoxon's Signed Rank Test.

OR

(b) Describe Median test.

Z-Z-Z END