Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2023

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATION

LINEAR ALGEBRA

			LINEARA	LUEDKA		
Time: Three Hours Maximum: 50 Marks						
			SECTION-A Answer ALI ALL questions c		$(5 \times 1 = 5)$	
1.			$(v-w) = \underline{\hspace{1cm}}$			
	(i)αv	-aw	$(ii)\frac{\alpha v}{\alpha w}$	(iii)α - βw	$(iv)\alpha v + w$	
2.	If dim (i)n	$n_F v = m \text{ then } 0$	$ \frac{\dim_F \text{ Hom } (v, v) = 1}{(ii)m^2} $	(iii)-n	(iv)m+n	
3.	An element in A(v) which is not regular is called (i)regular (ii)singular (iii)Eule				(iv)irreducible	
4.	A_(i)bas			linearly independent (iii)angle	set in H that spans H. (iv)empty set	
5.	An nx (i)dia	n matrix with gonalizable	n distinct eigen val (ii)IVP	lues is (iii)orthonormal	(iv)Jacobis method	
SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)						
6.	a If V is the internal direct sum of $U_1,, U_n$, then prove that V is isomorph to the external direct sum of $U_1,, U_n$. OR					
	b					
7.	a	Prove that A	(A(W)) = W. OF	3		
	b		d α, β∈F then show βv , $\alpha u + \beta v$) = $\alpha \bar{\alpha}$	w that $f(u, u) + \alpha \overline{\beta}(u, v) + \alpha \overline{\beta}(u, v)$	$\overline{\alpha} \beta(v, u) + \beta \overline{\beta}(v, v).$	
8.	a	If V is finite and only if the	– dimensional over ne constant term of OF	the minimal polynom	EA(V) is invertible if 3 ial for T is not 0.	
	b		$\binom{2}{4}$ and m(T) = $\binom{-1}{2}$	then, find m(ST $\frac{1}{3}$)	7	
9.	a	Determine th		$\mathbf{x} \mathbf{A} = \begin{bmatrix} 2 & 5 & -3 & -4 \\ 4 & 7 & -4 & -4 \\ 6 & 9 & -5 & 2 \\ 0 & -9 & 6 & 5 \end{bmatrix}$	4 8 3 9 4 4 5 -6	
			OF	<		

b If
$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
 and $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$, then find AC and CA.

10. a Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are u and v eigenvectors of A?

b Find the characteristic equation of A =
$$\begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11. a If $v_1, ..., v_n$ is a basis of V over F and if $w_1, ..., w_m$ in V are linearly independent over F, then prove that $m \le n$.

OR

- b If V is a vector space over F then show that
 - (i) $\alpha 0 = 0$ for $\alpha \in F$,

(ii) ov = 0 for $v \in V$

- (iii) $(-\alpha) v = -(\alpha v)$ for $\alpha \in F$, $v \in V$
- (iv) If $v \ne 0$, then $\alpha v = 0$ implies that $\alpha = 0$.
- 12. a If V and W are of dimensions m and n, respectively, over F, then prove that Hom (V, W) is of dimension mn over F.

OR

- b Let V be a finite dimensional inner product space; then show that V has an orthonormal set as a basis.
- 13. a If A is an algebra, with unit element, over F, then show that A is isomorphic to a subalgebra of A(V) for some vector space V over F.
 - b (i) If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
 - (ii) If $T \in A(V)$ and if $S \in A(V)$ is regular, then show that $r(T) = r(STS^{-1})$.
- 14. a Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$, if it exists.

OR

- b Find a basis for the null space of the matrix $A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$.
- 15. a Determine if the following matrix is diagonalizable, $A = \begin{bmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2 \end{bmatrix}$.

b Let $A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$ find the eigenvalues of A, and find a basis for each eigenspace.