PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BCom DEGREE EXAMINATION DECEMBER 2023

(First Semester)

Branch - COMMERCE (BUSINESS PROCESS SERVICES)

MATHEMATICS FOR BUSINESS PROCESS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	СО
1	1 .	The compound interest for Rs. 10,000 for 2 years at 10% p.a. is a) Rs.2000 c) Rs. 2200 b) Rs. 2100 d) Rs. 12,000	K1	COI
	2	The present value under annuity due is a) $\frac{A}{i} [1 - (1+i)^{-n}]$ b) $A + \frac{A}{i} [1 - (1+i)^{-(n-1)}]$ c) $\frac{A}{i} [(1+i)^n - 1]$ d) $\frac{A}{i} (1+i)[(1+i)^n - 1]$	K2	CO1
2	3	A square Matrix A is an orthogonal matrix x, if a) AA'=I b) AA ⁻¹ =I d) A=A'	KI	CO2
	4	If $A = \begin{pmatrix} 3 & 2 & 3 \\ 0 & 4 & 0 \\ 3 & 8 & 3 \end{pmatrix}$, $\rho(A) =$ a) 0	K2	CO2
3	5	 A - λI = 0 is called a) Characteristic equation c) eigen value b) Characteristic Polynomial d) eigen vector 	K1	CO3
	6	Cayley-Hamilton theorem states that every matrix satisfies its own characteristic equation. a) Row b) column c) square d) triangular	K2	CO3
4	7	The second derivative of $y = x^n$ is a) nx^{n+1} b) nx^{n-1} c) $n(n-1)x^{n-2}$ d) n^2x^{n-2}	K1	CO4
	8	A necessary condition for f(x) being a maximum or a minimum at x=a is a) f(x)=0 b) f'(x)=0 c) f'(a)=0 d) f(a)=0	K2	CO4
5	9	$ \int_{0}^{2} x^{3} dx = $ a) 8 b) 4 c) 0 d) 1	K1	CO5
	10	$\int e^{2x} dx =$ a) $\frac{1}{2}e^{2x} + c$ b) $e^{2x} + c$ c) $2e^{2x} + c$ d) $2e^{x}$	K2	CO5

22BPU103N/22BPU103/19BPU03

Cont...

SECTION - B (35 Marks) Answer ALL questions stions carry EOUAL Marks

	ALL questions carry EQUAL Marks $(5 \times 7 = 35)$								
Module No.	Question No.	Question	K Level	со					
	11.a.	Mr. X borrows Rs.1,716. He repays Rs. 250 at the end of each year. In how many years can he clear the debt if the rate of compound interest is 7.5% p.a.?	,						
1	(OR)		K2	CO1					
	11.b.	A sum of money amounted to Rs. 1,071 in 6 months and Rs.1,106 in 16 months, Calculate the rate of simple interest.							
	12.a.	Show that the system of equations $3x-4y=2$, $5x+2y=12$, $-x+3y=1$ are consistent.	K2	CO2					
2		(OR)							
	12.b.	Prove that the matrix $\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$ is orthogonal.							
	13.a.	Find the Characteristic equation of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and verify that it is satisfied by A.							
3		(OR)	K2	CO3					
	13.b.	Find all the characteristic roots and the characteristic vectors of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$.							
	14.a.	Find $\frac{d}{dx} [log_e \left(\frac{x^2+1}{x^2-1}\right)]$							
4		(OR)	K2	CO4					
	14.b.	Find dy/dx if (i) $x^2 + y^2 = 1$ (ii) $xy = c^2$							
	15.a.	Evaluate (i) $\int \left(x + \frac{1}{x}\right)^2 dx$ (ii) $\int \frac{x^3 - x + 4}{x^2} dx$	_						
5		(OR)	K3	CO5					
	15.b.	Evaluate $\int \frac{3x^3}{(x^2+1)^3} dx$							

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

	ADD questions carry DQOAD (maiks (5 × 10 50)							
Module No.	Question No.	Question	K Level	со				
1	16	A certain amount of money was invested at 8% simple interest and after 9 months an equal amount was invested at 10% simple interest. Find the period in which the amount in each case becomes Rs.2,600. How much money was invested in each case?	K2	CO1				
2	17	Find the rank of $A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 6 \end{bmatrix}$.	K2	CO2				
3	18	Use Cayley- Hamilton theorem to express $2A^5 - 3A^4 + A^2 - 4I$ as a linear polynomial in A when $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$.	K2	CO3				
4	19	Find for what values of x, he following expression is maximum and minimum respectively: $2x^3 - 21x^2 + 36x - 20$ Find also the maximum and the minimum values.	К3	CO4				
5	20	(i) Integrate $x \log x$ with respect to x . (ii) Evaluate: $\int x e^{mx} dx$.	K3	CO5				