PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BCom DEGREE EXAMINATION DECEMBER 2023

(First Semester)

Branch - COMMERCE (BUSINESS ANALYTICS)

MATHEMATICAL TECHNIQUES FOR BUSINESS ANALYTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module	Question No.	Question	K Level	со
1	.1	Find the invoice price if the list price is Rs. 750 with a trade discount of 30% (a) 500 (b) 525 (c) 550 (d) 575	K1	CO1
1	2	The first term of Geometric progression is 20 and common ratio is 4. Then the fifth term is (a) 10240 (b) 40960 (c) 2560 (d) 5120	K2	CO1
	3	Find the type of the matrix $\begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix}$ (a) diagonal matrix (b) row matrix (c) column matrix (d) symmetric matrix	K1	CO2
2.	4	A matrix is said to be non-singular if (a) $ A = 0$ (b) $ A \neq 0$ (c) $ A = 1$ (d) $ A \neq 1$	K2	CO2
	5	The slope of the line joining P(-2,3) and Q(8,-5) is (a) -3/5 (b) -4/5 (c) -5/3 (d) -5/4	K1	CO3
3	6	Find the equation of the line passing through the point (2,-3) having the slope -5/7 is (a) 7x+5y+11=0 (b) 2x-5y+11=0 (c) 5x+7y+11=0 (d) 5x-2y+11=0	K2	CO3
	7	$log_a 1 =$	K1	CO4
4	8	The marginal revenue is Rs.25 and the elasticity of demand with respect to price is 2, then the average revenue (AR) is (a) 25 (b) 50 (c) 75 (d) 100	K2	CO4
5	9	(a) 25 (b) 50 (c) 75 (d) 100 $\int e^{7x} dx = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Kl	CO5
	10	$\int a^{x} dx = \underline{\hspace{1cm}}$ (a) $a^{x} \log_{e} a + c$ (b) $\frac{1}{a^{x}} \log_{e} a + c$ (c) $\log_{e} a + c$ (d) $\log_{e} a^{x} + c$	K2	COS

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module	Question No.	Question	K Level	СО
1	11.a.	A dealer got a profit of 20% by selling an article for Rs. 72. But he wants to make a profit of 35%. What should be his new selling price.	K2	CO1
		(OR)		
	11.b.	Find the sum up to n terms of the series 6+66+666+666+		

Cont...

				,
	12.a.	Given $A = \begin{pmatrix} 2 & 0 & 9 \\ -1 & 6 & 11 \\ 4 & 8 & -11 \end{pmatrix} B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 0 \\ 1 & -1 & -4 \end{pmatrix}$ and $C = \begin{pmatrix} 2 & 0 & -5 \\ 3 & 7 & 2 \\ -1 & 0 & -1 \end{pmatrix}$, then find $A + 2B$ and $2A - B + 5C$	K3	CO2
2	(OR)			
	12.b.	Find the inverse of the matrix $\begin{pmatrix} 2 & 2 \\ 3 & 5 \end{pmatrix}$ using elementary row operations		
	13.a.	Prove that the points P(1,1), Q(-1,-1) and R($-\sqrt{3}$, $\sqrt{3}$) are the vertices of an equilateral triangle.		
	(OR)		K3	CO3
3	13.b.	Find the equation of the straight line through the intersection of $2x - 3y + 4 = 0$ and $3x + 4y - 5 = 0$ parallel to $6x - 7y + 8 = 0$		
	14.a.	Find the derivative of (i) $x^5 + 3 \log x - 4e^x$ (ii) $\sqrt{2x} + 3^{2m}$		
4	(OR)			004
	14.b.	The total cost function y for x units is given by $y = \frac{3x(x+7)}{x+5} + 5$. Show that the marginal cost decreases continuously as the output increases.	K4	CO4
	15.a.	Integrate $(log x)^3$ with respect to x.		
İ	(OR)			
5	15.b.	IGiven $M = \frac{a}{\sqrt{at+b}}$ is the marginal cost function where t is the output and if the cost of zero output is zero, then find the total cost, $\pi = \int_0^x M(t) dt$, x being the total output.	K4	CO5

SECTION -C (30 Marks) Answer ANY THREE questions ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module	Question No.	Question	K Level	СО
1	16	Find the equated due date of payment of the following bills. Rs. 512 due on February 22 nd Rs. 638 due on March 27 th Rs. 742 due on May 15 th .	K4	CO1
2	17	Solve using Crammer's rule $x + 2y - z = 2$, 3x - 4y + 2z = 1 and $-x + 3y - z = 4$.	. K4	CO2
3	18	Given two cities located at (2,1) and (8,9) be connected by a straight road and a third city be at (4,7). Find the point on the road which should be connected to the third city so that its distance from the road is least.	K4	CO3
4	19	Find the fourth derivative of $log_e \sqrt{3x+4}$.	K4	CO4
5	20	Using partial fractions, solve $\int \frac{(x^2+x+1)}{(x-1)^2(x-2)} dx$.	K4	CO5

Z-Z-Z