PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Common to Branches - COMPUTER SCIENCE & COMPUTER TECHNOLOGY

MATHEMATICS FOR COMPUTING - II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

ALL questions carry EQUILD mand				
Module No.	Question No.	Question	K Level	со
1	1	The word and phrases that are used to form a compound proposition are called a) primary b) connectives c) conjunction d) atomic	K1	CO1
	2	The statement $(p \land q) \Rightarrow q$ is a a) contradiction b) exclusive c) tautology d) argument	K1	CO1
	3	If $A = \{1,2,3\}$ and $B = \{2,3\}$ then $n(A \times B) = $ a) 3 b) 2 c) 5 d) 6	K2	CO2
2	4	R is symmetric if and only if a) $R=R$ b) $R=R^{-1}$ c) $R=R^{t}$ d) $R=M_{R}$	K2	CO2
3	5	Let $f: A \to B$ be a function then the set A is called a) domain b) co-domain c) function d) relation	K1	CO3
	6	Let f be a function from A to B and g is function from B to A. Then g is the function of f. a) partial b) composite c) inverse d) identity	K1	CO3
4	7	The of a vertex v in a directed graph is the number of edges beginning from it. a) in degree b) degree c) incidence d) out degree	K2	CO4
	8	A multigraph G is said to be if it can be drawn without any break in the curve and without repeating any edge. a) traversable b) planar c) undirected d) directed	K1	CO4
5	9	If graph G is connected with n vertices, then rank of incidence matrix M is a) n b) $n-1$ c) $n+1$ d) $2n$	K2	COS
	10	If a graph G is connected and each vertex has even degree then there is an circuit in G. a) Hamiltonian b) Euler c) connected d) Planar	K1	COS

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry **EOUAL** Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question Question	K Level	СО
1	11.a.	With the help of truth tables, prove the following i) $p \lor q = \sim (\sim p \land \sim q)$ ii) $p \lor \sim q = (p \lor q) \land \sim (p \land q)$	K3	COI
		(OR)		
	11.b.	If p,q and r are three statements, then show that $[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$. Also write its truth set.	*	Cont

Cont...

	1			
2	12.a.	Classify the types of relations with an example.		
	(OR)		1/2	Goo
	12.b.	If R is an equivalence relations in a set A, then prove that R^{-1} is also an equivalence relation.	K3	CO2
	13.a.	If R is a set of real numbers, then show that the function, $f: R \to R$ defined by $f(x) = 5x^3 - 1$ is one-one onto function.		
3	(OR)		K4	CO3
	13.b.	If $f: A \to B$ and $g: B \to C$ are invertible functions, then prove that $g \circ f: A \to C$ is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.	121	
	14.a.	Prove that the number of vertices of odd degree in a graph is always even.		
4	(OR)		K4	CO4
	14.b.	Prove that if the intersection of two paths in a graph G is disconnected, then their union has atleast one circuit.		
5	15.a.	Define adjacency matrix with an example and discuss the results about adjacency matrix.		
	(OR)		170	005
	15.b.	Define the following with an example. i) Planar graph ii) Maps and iii) Region of a graph.	K2	CO5

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	со
1	16	Examine the validity of following arguments $p \Rightarrow q$ i) $\frac{p \wedge q}{\therefore q}$ ii) $\frac{q \Rightarrow p}{\therefore p \vee q}$ $p \Rightarrow q$ $p \Rightarrow q$ $p \Rightarrow q$ $p \Rightarrow q$ iii) $\frac{p \Rightarrow q}{\therefore p \Rightarrow r}$ $p \Rightarrow r$ $\therefore r$	K4	CO1
2	17	Define Hasse Diagrams with example and briefly explain the tips are necessary to read Hasse diagram for a relation.	K4	CO2
3	18	Classify the different types of functions with examples.	K3	CO3
4	19	 Prove the following A simple graph G with n vertices and k components cannot have more than ¹/₂(n-k)(n-k+1) edges. If a simple graph G with n vertices has more than ¹/₂(n-1)(n-2) edges, then G is connected. 	K4	CO4
5	20	Derive Euler's formula and hence prove that, (i) $3r \le 2e$ and (ii) $e \le 3n - 6$, where G is a loop-free connected player graph with 'n'vertices, 'e' (>2) edges and 'r' regions.	K4	CO5