PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(First Semester)

Common to Branches - COMPUTER SCIENCE & COMPUTER TECHNOLOGY

MATHEMATICS FOR COMPUTING - I

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

		ALL questions early EQUAL marks	,	-
Module No.	Question No.	Question	K Level	СО
1	1	If the Rank of $\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ is a) 1 b) 2 c) 3 d) 4	K1	CO1
	2	a) 1 b) 2 c) 3 d) 4 The Eigen values of $\begin{pmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{pmatrix}$ are a) 3,5,3 b) 3,4,1 c) 4,6,0 d) 0,0,1	K2	CO2
2	3	$D(\sin \alpha x) = $ a) $\sin x$ b) $\cos x$ c) $\alpha \cos \alpha x$ d) $\sin \alpha x$	K1	CO1
	4	Which of the following statement is correct for the given partial differential equation? $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$ a) it is linear equation of order two b) it is non-linear equation of order two c) it is linear equation of order one d) it is non-linear equation of order one	K2	CO2
3	5	Gauss Elimination the given system of simultaneous equations transformed into a) Upper-triangular matrix b) Diagonal matrix c) Unit matrix d) Transpose matrix	K1	CO1
	6	In Gauss Jordan method,transformations are allowed . a) Diagonal b)Column c)Row d) Square	K2	CO2
4	7	In numerical integration the width of the subinterval is given by a) $h = \frac{x_n - x_0}{n}$ b) $h = \frac{x_n + x_0}{n}$ c) $h = \frac{x_0 - x_n}{n}$ d) $h = \frac{x_0 + x_n}{n}$	K1	CO1
	8	Simpson's $\frac{1}{3}$ rule is applicable only when the number of subintervals is a) odd b) even c) either odd or even d) neither odd nor even	K2	CO2
5	9	The modified Euler method is based on the average of a) lines b) chords c)slopes d) points	K1	CO1
	10	If $y'' = 1 - 2yy'$ with $y(0) = 1$ and $y'_0 = -1$, then the initial value of y''_0 is a) -1 b) 3 c) -8 d) 34	K2	CO2

22CMU103N/22CTU103N/ 22CMU103/22CTU103

Cont ...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	со
1	11.a.	Solve that the equations are consistent. $x + 2y = 3$ y - z = 2 $x + y + z = 1$		
	(OR)			CO4
	11.b.	Find the rank of matrix $A = \begin{pmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ 2 & 13 & 10 \end{pmatrix}$		
	12.a.	Solve $(3D^2 - 4D + 5)y = 3e^{2x}$	-41	CO4
2		(OR)	K2	
	12.b.	Solve $p^2 + q^2 = npq$		
3	13.a.	Solve the system by Gaussian –Elimination method $x + y + 3z = 6$, $x + 3y + z = 8$, $2x + y + z = 5$.		
	(OR)			CO4
	13.b.	Solve the system by Gauss-Seidal method $10x - 5y - 2z = 3$, $4x - 10y + 3z = -3$, $x + 6y + 10z = -3$		
4	14.a.	By Dividing the range into ten equal parts, evaluate $\int_{0}^{\infty} \sin x dx$ by Trapezoidal rule	***	004
	(OR)		K3	CO4
	14.b.	Evaluate $\int_{0}^{1} \frac{x^2 dx}{1+x^3}$ by Simpson's $\frac{1}{3}$ rule with h=0.25		
5	15.a.	Using Euler's method, solve the equation $y' = x + y$, $y(0) = 1$ with $h = 0.2$ and obtain $y(0.2)$ and $y(0.4)$.	W2	COS
	(OR)		K3	CO5
	15.b.	Find $y(1.2)$ by Modified Euler's method given that $y' = \frac{2y}{x} + x^2$, $y(1) = 0.5$		

SECTION - C (30 Marks)

Answer ANY THREE questions

 $(3 \times 10 = 30)$

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$					
Module No.	Question No.	Question	K Level	СО	
1	16	Find the Eigen values and Eigen vectors of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$	K3	соз	
2	17	Solve $(D^2 + 3D + 2)y = x^2$	K3	CO3	
3	18	Solve the following systems of equation by Gauss-Jacobi methods $20x+2y+6z=28$, $x+20y+9z=-23$, $2x-7y-20z=-57$.	К3	CO5	
4	19	From the following table of values of x and y obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for $x = 1.25$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	К3	CO4	
5	20	Using Runge-Kutta method of fourth order to find $y(0.7)$ and $y(0.8)$ given that $y' = y - x^2$, $y(0.6) = 1.7379$	К3	CO5	