PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Common to Branches - COMPUTER SCIENCE & COMPUTER TECHNOLOGY

MATHEMATICS - II

Maximum: 50 Marks Time: Three Hours

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- The statement which is true if p and q are both true or both false and is false when one of them is false and another is true is called as-----
 - (i) conditional statement

(ii) inverse

(iii) Bi conditional statement

- (iv) converse statement
- What is the value of x and y if the following ordered pairs are equal?

(2x-1, -5) = (x, y+1)

(i) x=1,y=0

(ii) x=-1, y=1

(iii) x=-1,y=0

- (iv) x=1,y=-6
- A function $f: A \to A$ defined by f(x)=x for each $x \in A$ is called -----3
 - (i) constant function

(ii) identity function

(iii) one-one function

- (iv) on to function
- A vertex is said to be pendent vertex if its degree is-----
 - (i) one
- (ii) zero
- (iii) five
- (iv) two
- A Path that passes through each edge exactly once but vertices may be repeated is 5
 - (i) Hamiltonian path

(ii) Euler circuit

(iii) Euler path

(iv) Hamiltonian circuit

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

By means of truth table show that $(p \land q) \land \Box (p \lor q)$ is a contradiction. 6. a

- Show that the statement $(p \wedge \Box q) \vee (\Box p \wedge q)$ is contingency. b
- Let $A = \{a,b\}$, $B = \{p,q\}$ and $C = \{q,r\}$. Find, 7. a (a) $A \times (B \cup C)$

(b) $(A \times B) \cup (A \times C)$

OR

- The relation R on the set S of all real numbers is defined as: a R b if and only if b 1 + ab>0. Show that this relation is reflexive and symmetric but not transitive.
- If R and C be the set of all Real and Complex numbers, respectively, then prove that the 8. function defined as: $f: C \to R$ such that f(z) = |z|, for all $z \in C$ is neither one-one nor onto.

- Let A = $\{1,2,3,4\}$, B = $\{a,b,c,d\}$ and C = $\{x,y,z\}$. Consider the function $f:A \to B$ h and $g: B \to C$ defined by $f = \{(1,a), (2,c), (3,b), (4,a)\}$ and $g = \{(a,x), (b,x), (c,y), (c,y),$ (d,y)}. Find the composition function (g0f).
- Prove that a simple graph G with n vertices and k components cannot have more than 9. a $\frac{1}{2}$ (n-k)(n-k+1) edges.
 - Show that the maximum number of edges in a complete bipartite graph with n vertices are $n^2/4$...

Cont...

10. a Define adjacency matrix and write the adjacency matrix for the given graph.

OR

b Determine the number of loops and multiple edges in a multi graph G from its

adjacency matrix
$$A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 3 \\ 2 & 1 & 0 & 1 \\ 0 & 3 & 1 & 0 \end{bmatrix}$$

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11. a Construct the truth table for the following and write the truth set.

$$p \Rightarrow \{(q \vee r) \land \Box (p \Leftrightarrow \Box r)\}$$

OR

b Examine the validity of the following argument.

$$p \Rightarrow \Box q$$

$$p \Rightarrow \Box q$$

$$\underline{p \Rightarrow r}$$

$$\therefore r$$

- 12. a Define the following,
 - (i) Binary Relation
- (ii) Universal Relation
- (iii) Identity Relation

- (iv) Void Relation
- (v) Inverse Relation
- (v) Reflexive Relation

OR

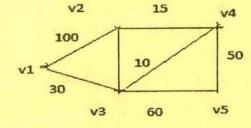
- b Show that the relation \leq defined on the set of positive integers I₊ is a partial order relation.
- 13. a If $f: A \to B$ and $g: B \to C$ are two one-one onto functions, then prove that

(i) g 0 f: A \rightarrow C is one-one onto, and

(ii) g 0 f is invertible, ie, (g 0 f)⁻¹ = (f¹ 0 g⁻¹): C
$$\rightarrow$$
 A.

OR

- b Let X and Y be two nonempty sets and let $f: X \to Y$ is an into mapping and also $A \subseteq X$, $B \subseteq X$, then prove that (i) $f(A \cap B) \subseteq f(A) \cap f(B)$, and (ii) $f^1(A \cap B) = f^1(A) \cap f^1(B)$
- 14. a Define (i) Simple Graph
- (ii) Multi Graph
- (iii) Degree of a vertex


- (iv) Walk
- (v) Path
- (vi) Trial

OF

- b Prove that, a graph G is disconnected if and only if its vertex set V can be portioned into two non-empty, disjoint subsets V₁ and V₂ such that there exists no edge is G whose one end vertex is in subset V₁ and the other in subset V₂.
- 15. a Show that an indirect graph G is Eulerian if and only if it is connected and each vertex has even degree.

OR

b Apply Dijkastra algorithm to find the shortest path from vertex v₁ to v₅in the given graph.

