PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch - CHEMISTRY

QUANTUM MECHANICS AND GROUP THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question	K level	СО
1	1.	The commutator of any two quantum mechanical operators that correspond to a wavefunction is a) zero b) non-zero c) infinity d) sometimes zero and sometimes non-zero	K1	CO1
	2.	One of the following is not a linear operator. a) Taking square root b) d/dx c) d ² /dx ² d) \int dx	K2	CO1
2	3.	The zero-point energy of a particle in a 1D box is a) h ² /8mL ² b) 9h ² /8mL ² c) 16h ² /8mL ² d) 4h ² /8mL ²	K1	CO2
	4.	The energy gap between the vibrational energy levels of a simple harmonic oscillator is a) $h\nu/2$ b) $h\nu$ c) $5h\nu/2$ d) $3h\nu/2$	K2	CO2
3	5.	In the perturbation method, which of the following terms is neglected in the Hamiltonian operator? a) total kinetic energy b) The nuclear-electronic attraction c) electronic - electronic repulsion d) electronic - nuclear repulsion	K2	CO3
	6.	The unit of energy in atomic and molecular calculations is a) Joule b) Hartree c) Dalton d) Calorie	K1	CO3
4	7.	How many numbers of one-dimensional irreducible representations are in the C _{2V} point group? a) Zero b) one c) three d) four	K1	CO4
when the state of	8.	Which symmetry element is absent in the ethylene molecule? a) $C_{\alpha}(z)$ b) $C_{2}(x)$ c) $C_{2}(y)$ d) $C_{2}(z)$	K2	CO4
5	9.	How many Raman signals can be obtained for water molecule? a) One b) Two c) Three d) Four	K2	CO5
	10.	The irreducible representations representing bending vibrations of NH ₃ molecule is a) A ₁ b) E c) A ₁ + E d) 2A ₁	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11. a	 (i) What are the conditions for Hermitian operators? (ii) Calculate the de Broglie wavelength of an electron travelling with a momentum of 2.73 x10⁻²⁴ kg. m. s⁻¹. OR (i) If we locate an electron within 20 pm, then what is the uncertainty in its speed? (ii) Show that operators, AB≠BA for a function f(x), If operator A= d/dx and operator B=x². 	K4	CO1

22CHP207N / 22CHP207

Cont...

			Cont	
2	12. a	Obtain the wavefunction and energy equation for a particle in 3D box by solving its Schrodinger wave equation. OR (i) Draw potential energy level diagram of simple harmonic oscillator. (3.5 Marks) (ii) Write the ground-state normalized wavefunction (ψ ₀) and energy equation (E ₀) of the simple harmonic oscillator. (3.5 Marks)	K5	CO2
3	13. a	Determine the ground state energy of the He atom using first-order perturbation theory. OR Discuss the LCAO-MO treatment of H ₂ ⁺ ion in detail.	K.5	CO3
4	14. a	Answer the following questions from the irreducible character table of the D _{2h} point group given at the end of the question paper: (i) Number of mutually conjugated classes (ii) Order of the group (iii) Number of irreducible representations (iv) Totally symmetric irreducible representation (v) Direct product: B _{2u} × B _{3u} = (vi) Is D _{2h} an abelian group? (vii) One example for D _{2h} point group OR (i) Distinguish between an abelian and a cyclic groups. (ii) Direct product of E ² , in the C _{3v} point group (iii) Explain the improper axis of symmetry in trans-dichloroethylene.	K4	CO4
5	15. a	Obtain the irreducible representations representing vibrational modes of the NH ₃ molecule and find out the number of IR bands. OR Discuss the possible hybridization of water molecule using group theory.	K6	CO5

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	Examine the postulates of quantum mechanics.	K6	CO1
2	17	Set up the Schrodinger wave equation for the hydrogen atom. From the solutions of $\phi(0)$, $\Theta(0,0)$ and $R(1,0)$ functions, determine the total wavefunction (ψ_{100}) and energy expression (E_{100}) for hydrogen atom.	K5	CO2
3	18	Show that the delocalization energy of a benzene molecule is 2β using Huckel's approximations method.	K5	CO3
4	19	(i) Decompose the given reducible representation of C ₂ V point group into its irreducible representations. C ₂ V E C ₂ (z) σ _{xz} σ _{yz} Γ _{red} 15 -1 3 3 (ii) Construct the irreducible character table for the C ₂ V point group using the Great Orthogonality Theorem.	K5	CO4
5	20	How does group theory predict the number of IR and Raman signals for SO ₂ molecule? Explain.	K4	CO5
Given	Irreducible	e representation character table of D_{2h} point group for answering Quest 6. The D_{ah} Groups $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ion 14.	a.
		Z-Z-Z END		