$(5 \times 1 = 5)$

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

ADVANCED MATHEMATICAL STATISTICS

Maximum: 50 Marks Time: Three Hours

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

- The function F(x, y) defined by F(x, y) = P(X < x, Y < y) is called the 1 of the random variable (X, Y)
 - distribution function
- (ii) periodic function
- (iii) convolution function
- (iv) normal function
- What is the standard deviation of the uniform distribution? 2
 - (i) s

(ii) a

(iii) o

- (iv) λ
- The sequence $\{X_n\}$ of random variables is called stochastically convergent to zero 3 is satisfied. if for every $\varepsilon > 0$ the relation ____

- (i) $\lim_{n \to \infty} P(|X_n| > \varepsilon) = 1$ (ii) $\lim_{n \to \infty} P(|X_n| > \varepsilon) = 0$ (iii) $\lim_{n \to \infty} P(|X_n| > 0) = 0$ (iv) $\lim_{n \to \infty} P(|X_n| > 1) = 0$
- If _____ holds we say that the sequence $\{Z_n\}$ is convergent to zero alomost 4 everywhere.

 - (i) $P\left(\lim_{n\to\infty} Z_n = 0\right) = 1$ (ii) $P\left(\lim_{n\to\infty} Z_n = 1\right) = 1$ (iii) $P\left(\lim_{n\to\infty} Z_n = 0\right) = \infty$
- A family of random variables X depending on the parameter t, where t belongs to a set I of real numbers is called
 - (i) usual process
- (ii) random process
- (iii) arbitrary process
- (iv) stochastic process

SECTION - B (15 Marks)

Answer ALL Questions

ALL Ouestions Carry EQUAL Marks

Joint distribution of x and y is given by $f(x, y) = 4xy \bar{e}(x^2 + y^2)$, xzo, yzo 6 a Test whether x and y are independent.

- Derive $\int_{\infty}^{\infty} f_1(x) f\left(\frac{y}{x}\right) dx = fz(y)$. b
- Derive the mean and variance of rectangular distribution. 7

- Narrate gamma distribution. b
- Prove: Let $F_n(x)$ (n = 1,2,...) be the distribution function of the random variable 8 a X_n . The sequence $\{X_n\}$ is stochastically convergent to zero if and only if the sequence $\{F_n(x)\}$ satisfies the relation

$$\lim_{n \to \infty} F_n(x) = \begin{cases} 0 & \text{for } x \le 0 \\ 1 & \text{for } x > 0 \end{cases}$$

Prove: The sequence of random variables $\{X_n\}$ given $P\left(Y_n = \frac{r}{n}\right) = \binom{n}{r} p^r (1-p)^{n-r}$ and $X_n = Y_n - p$ is stochastically convergent to 0, that is for any $\varepsilon > 0$, we have $\lim_{n \to \infty} P(|X_n| > \varepsilon) = 0$ Prove: Suppose that the random variable $X_1, X_2, ...$ are independent and have the same distribution with standard deviation $\sigma \neq 0$. Let the random variable U_n be defined by the formula $U_n = \frac{X_1 + X_2 + \cdots + X_n}{n}$. Furthermore, let $F_n(v)$ be the distribution function of the random variable V_n defined as $V_n = \frac{U_n - E(U_n)}{\sqrt{D^2(U_n)}}$. Then the sequence $\{F_n(v)\}$ satisfies the realtion $\lim_{n \to \infty} F_n(v) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^v e^{-v^2/2} dv$

OR

- b State and prove Lindeberg-Feller theorem.
- 10 a Summarize (i) Markov process (ii) Homogeneous.

OR

b Explain: A process with independent increments.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a If x and y are independent continuous random variables, then find the probability density functions of Z = x - y.

OR

b The distribution of the random variable (x,y) is given by the formulas P(x = 1, y = 1) = P(x = 1, y = 2) = P(x = 2, y = 2) = 1/3.

(i) Find the distribution functions F(x, y), $F_1(x)$ and $F_2(y)$.

- (ii) Check whether the points $(1, \frac{1}{2})$, (1,3), $(2, \frac{1}{2})$ and (2,3) are discontinuous point on f(x,y).
- 12 a Explain: Beta distribution with derivation.

OR

- b Explain: Cauchy distribution with density function and characteristic function.
- Prove: If the sequence $\{F_n(x)\}(n=1,2,...)$ of distribution functions is convergent to the distribution function F(x), then the corresponding sequence of characteristic functions $\{\phi_n(t)\}$ converges at every point t, $(-\infty < t < \infty)$ to the function $\phi(t)$ which is the characteristic function of the limit distribution function F(x), and the convergence to $\phi(t)$ is uniform with respect to t in every finite interval on the t-axis

OR

- b Prove: If the sequence of characteristic functions $\{\phi_n(t)\}$ converges at every point $t(-\infty < t < \infty)$ to a function $\phi(t)$ continuous in some interval $|t| < \tau$, then the sequence $\{F_n(x)\}$ of corresponding distribution functions converges to the distribution function F(x) which corresponds to the characteristic function $\phi(t)$
- 14 a State and prove Lapunov theorem.

OR

- b Prove: If a random variable X of the discrete type takes on with positive probability only integer values and satisfies condition (w), then its characteristic function satisfies the relations $\phi(2\pi) = 1$, $|\phi(t)| < 1$ if $0 < |t| < 2\pi$
- Prove: A stochastic process $\{X_t, 0 \le t < \infty\}$ where X_t is the number of singals in the interval [0, t), satisfying conditions I to III and the equality $P(X_0 = 0) = 1$, is a homogeneous Poisson process.

OK

Prove: The solution $V_m(t)$ of the system $V_0'(t) = -\lambda_i V_0(t)$,

 $V_{n}'(t) = -\lambda_{i+m} V_{m}(t) + \lambda_{i+m-1} V_{m-1}(t) \quad (m = 1,2,...) \text{ with the intial conditions}$ $= \begin{cases} 1 & \text{for } m = 0 \\ 0 & \text{for } m \neq 0 \end{cases}$ satisfy the relation $\sum_{m=0}^{\infty} V_{m}(t) = 1$ if and only if