PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch - ELECTRONICS

MATHEMATICS - II

Time: Three Hours

Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- Which of the following is not the condition for Dirichlet of a function to be 1 expanded as Fourier series.
 - (i) f(x) is well-defined
 - (ii) f(x) is finite or bounded.
 - (iii) f(x) has infinite number of discontinuous points
 - (iv) f(x) has only a finite number of maxima or minima.
- The partial differential equation formed from $z=(x+y)f(x^2-y^2)$ is 2
 - (i) px+qy=z

- (ii) py+qx=z
- (iii) py qx = z
- (iv) px qy = z
- Laplace transform of f(x) is $\frac{s}{s^2-4}$. Then f(x) is 3
 - (i) $f(x) = \sin(2x)$
- (ii) $f(x) = \cosh(2x)$
- $(iii) f(x) = \sinh(2x)$
- (iv) $f(x) = \cos(2x)$
- If the vectors $2\hat{t} + \hat{j} + \hat{k}$ and $\vec{t} 4\vec{j} + \lambda \vec{k}$ are mutually perpendicular, then the 4 value of λ is
 - (i)
- (ii) 2
- (iii) 3
- (iv) 4
- 5 Surface integral is used to con
 (i) surface integral, volume integral

 (ii) line integral, volume integral

 (iv) none of the above Surface integral is used to convert _____ into _
- (ii) line integral, volume integral

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Obtain the sine series for unity in $(0,\pi)$. 6 a

- b Express f(x)=c-x when 0 < x < c as a half range cosine series with period 2c.
- a Solve $x \frac{\partial z}{\partial x} = 2x + y + 3z$. 7

OR

- Solve $\frac{\partial^2 z}{\partial x^2} 4 \frac{\partial z}{\partial x} + 3z = e^{3x}$ b
- Define Laplace transform and find $L\left[\frac{1}{\sqrt{t}}\right]$. 8 a

- Find the inverse Laplace transform of $\frac{s}{(s+3)^2+4}$. b
- Find a unit vector normal to the surface $x^2+y^2-z=10$ at (1,1,1). 9

Find Curl \vec{F} where $\vec{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$. b

- 10 a If $\vec{F} = (3x^2 + 6y)\vec{i} 14yz\vec{j} + 20xz^2\vec{k}$, evaluate $\int \vec{F} \cdot d\vec{r}$ from (0,0,0) to (1,1,1) along the curve x=t, $y=t^2$ and $z=t^3$.
 - b If $ax\vec{i} + by\vec{j} + cz\vec{k}$ where a, b, c are constants, Show that $\iint \vec{F} \cdot \hbar ds = \frac{4\pi}{3} (a+b+c)$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11 a If $f(x) = |\cos x|$, expand f(x) as a Fourier series in the interval $(-\pi, \pi)$.
 - b Obtain the Fourier expansion of $x\sin x$ as a cosine series in $(0,\pi)$.
- 12 a Find the particular integral of $(D^2 + 4DD' 5D'^2)z = \sin(2x + 3y)$.
 - b Find the complete solution of $\frac{\partial^2 z}{\partial x^2} 4 \frac{\partial^2 z}{\partial x \partial y} + 4 \frac{\partial^2 z}{\partial y^2} = e^{2x+y}$.
- 13 a Evaluate $\int_0^\infty te^{-3t}$ sintdt using Laplace transform.

OR

- b Find the inverse Laplace transform of $\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$
- Prove $\vec{f} = (y^2 \cos x + z^3)\vec{i} + (2y\sin x 4)\vec{j} + (3xz^2)\vec{k}$ is irrotational and find its scalar potential.

OR

- b Show that $r^n \vec{r}$ is an irrotational vector for any value on n but is solenoidal only if n=-3.
- Evaluate $\iint \vec{F} \cdot \hbar dS$ where $\vec{F} = z\vec{i} + x\vec{j} y^2z\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 1$ included in the first octant between the planes z=0 and z=2.
 - Verify Stokes theorem for $\vec{F} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.

Z-Z-Z

END