PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch - BIOCHEMISTRY

MATHEMATICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

ALL questions carry EQUAL marks (10 x 1 = 10)							
Module No.	Question No.	Question	K Level	СО			
1	1	If 0, 3, 4 are the eigen values of a square matrix A of order 3, then det (A) is (a) 12 (b) 0 (c) ∞ (d) $\frac{1}{12}$	К1	CO1			
	2*	If two eigen values of $\begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$ are 1 and -1, then the third eigen value is (a) 4 (b) 2 (c) -1 (d) 1	K2	CO1			
2	3	If one root of $5x^2+13x+k=0$ is reciprocal of the other, then $k = $ (a) 5 (b) 13 (c) 1/5 (d) 1/13	K2	CO2			
	4	The transformed equation of $x^3 + 3x^2 + x - 4 = 0$ into the equation whose roots are multiplied by 10 is a) $x^3 + 3x^2 + x - 4 = 0$ b) $x^3 + 30x^2 + 10x - 40 = 0$ c) $x^3 + 30x^2 + 100x - 4000 = 0$ d) $x^3 + 3000x^2 + 100x - 40 = 0$	K2	CO2			
3	5	In Gauss Elimination method, the coefficient matrix is transformed into matrix (a) upper triangular (b) unit (c) lower triangular (d) diagonal	K1	CO3			
	6	The rate of convergence of Gauss Seidal method is roughly that of Gauss Jacobi. (a) twice (b) thrice (c) once (d) 4 times	K1	CO3			
4	7	Newton's forward and backward interpolation formula will be used for intervals. (a) unequal (b) equal (c) infinite (d) finite	K1	CO4			
	8	The process of finding the value of a function inside the given range is called (a) interpolation (b) integration (c) extrapolation (d) differentiation	K1	CO4			
5	9	In Newton's forward difference formula, $u = $	K1	CO5			
	10	The number of intervals in Simpson's 3/8 rule should be a multiple of (a) 4 (b) 5 (c) 3 (d) 2	K2	CO5			

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	со
1	11.a.	Verify Cayley Hamilton theorem for $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$		
		W2	COL	
	11.b.	Find the eigen values and eigen vectors of $\begin{bmatrix} 6 & -6 & 5 \\ 14 & -13 & 10 \\ 7 & -6 & 4 \end{bmatrix}$	К3	CO1
2	12.a.	Show that the equation $x^3 + qx + r = 0$ has two equal roots if $27r^2 + 4q^3 = 0$.		
		K4	CO2	
	12.b.	Find the equation whose roots are less by 2, than the roots of the equation $x^5 - 3x^4 - 2x^3 + 15x^2 + 20x + 15 = 0$.		
3	13.a.	Solve the following system of equations by Gauss-seidel method $3x - y + z = 1$, $3x + 6y + 2z = 0$ and $3x + 3y + 7z = 4$.		
		K4	CO3	
	13.b.	Solve the given system of equations by Gauss-Elimination method $10x-2y+3z=23$, $2x+10y-5z=-33$, $3x-4y+10z=41$.		
4	14.a.	Use Newton's backward formula to evaluate $tan(0.28)$ given $tan(0.10) = 0.1003$, $tan(0.15) = 0.1511$, $tan(0.20) = 0.2027$, $tan(0.25) = 0.2533$, $tan(0.30) = 0.3093$.		
		K3	CO4	
	14.b.	Solve $\ln x = 1.3$ by inverse Interpolation using $x = G(y)$ with $G(1) = 2.718$, $G(1.5) = 4.481$, $G(2) = 7.387$, $G(2.5) = 12.179$ and find value of x.		
	15.a.	Obtain f'(0) and f"(4) from the data		5.05
.5		x: 0 1 2 3 4		
		f(x): 1 2.718 7.381 20.086 54.598		
		K4	CO5	
	15.b.			

Cont...

SECTION -C (30 Marks) Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question Question	K Level	со
1	16	Verify Cayley-Hamilton theorem and hence find A^{-1} and A^4 for $A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{pmatrix}.$	K4	CO1
2	17	Calculate a root of $x^4 - x - 10 = 0$, which is near to $x = 2$, correct to three places of decimal.	K3	CO2
3	18	Use Gauss Jacobi method to approximate the solution of the following system of linear equations $5x - y + z = 10$; $2x + 4y = 12$; $x + y + 5z = -1$.	K3	CO3
4	19	Using Lagrange's interpolation formula, find a polynomial y(x) and hence find y(4) from the following table. x 1 2 3 5 y 0 7 26 124	K4	CO4
5	20	Obtain f'(0) and f''(4) from the data. x: 0 1 2 3 4 f(x): 1 2.718 7.381 20.086 54.598	K4	CO5

Z-Z-Z