PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2023

(Second Semester)

Branch - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS

	Time: 3 hours	Maximum Marks: 50
		SECTION-A (5 Marks)
		Answer ALL questions
	ALL que	stions carry EQUAL marks $(5 \times 1 = 5)$
1.	The partial differential equ $(x-a)^2 + (y-b)^2 + z^2$	ation corresponding to the equation = 1 is
	(i) $z = (x + a)(y + b)$	(ii) $z^2(1+p^2+q^2)=1$
	$(iii) 2z = (ax + y)^2 + b$	(iv) $ax^2 + by^2 + z^2 = 1$
2.	are functions of x, y, z is called	
	(i) Clairaut's equation	(ii) Characteristic equation
	(iii) Charpit's equation	(iv) Lagrange's equation
3.	(i) $S^2 - 4RT > 0$ (iii) $S^2 - 4RT < 0$	ifferential equation is elliptic if $(ii) S^2 - 4RT = 0$ $(iv) S^2 - 4RT \neq 0$
4.	equation $\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2}$ where	in longitudinal vibration of a bar satisfies the wave $c^2 = \underline{\qquad}$ (iii) $\frac{T}{\sigma}$ (iv) $\frac{1}{LC}$
5.	The diffusion equation is re (i) $u_{tt} - c^2 \Delta^2 u = 0$ (iii) $\Delta^2 u = 0$	epresented by $(ii) u_t - k\Delta^2 u = 0$ $(iv) \Delta^2 u = f(x, y, z).$
		Answer ALL Questions destions Carry EQUAL Marks (5 x 3 = 15)

6. (a) Find the general integral of the linear partial differential equation $y^2p - xyq = x(z - 2y)$.

OR

- (b) Find the surface which intersects the surfaces of the system z(x+y) = c(3z+1) orthogonally and which passes through the circle $x^2 + y^2 = 1, z = 1$.
- 7. (a) If u is the complementary function and z_1 a particular integral of a linear partial differential equations, then show that $u + z_1$ is a general solution of the equation.

OK

(b) Find the particular integral of $(D^2 - D') = 2y - x^2$.

Cont...

8. (a) If $\rho > 0$ and $\Psi(r) = \int_V \frac{\rho(r')dr'}{|r-r'|}$, where the volume V is bounded, then prove that $\lim_{r\to\infty} r \, \Psi(r) = M$ where $M = \int_V \rho(r')dr'$.

OR

- (b) Explain briefly about the two main types of the boundary value problem for that Laplace's equation.
- 9. (a) Write any two applications of wave equation in Physics.

OR

- (b) Show that y = f(x + ct) + g(x ct) is the general solution of wave equation $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$ where f and g are arbitrary functions.
- 10. (a) Analyze the occurrence of diffusion equation in conducting media.

OR

(b) Show that $\theta = \frac{1}{\sqrt{t}} exp\left(-\frac{\chi^2}{4\kappa t}\right)$ is a solution of the diffusion equation $\frac{\partial^2 \theta}{\partial \chi^2} = \frac{1}{\kappa} \frac{\partial \theta}{\partial t}$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 6 = 30)$

11. (a) Show that the equations xp - yq = x; $x^2p + q = xz$ are compatible and solve them.

OR

- (b) Find the complete integral of the equation $p^2x + q^2y = z$.
- 12. (a) Derive the Laplace equation in cylindrical coordinates.

OR

- (b) Reduce the equation $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form and solve it.
- 13. (a) Show that the surfaces $x^2 + y^2 + z^2 = cx^{2/3}$ can form a family of equipotential surfaces and find the general form of the corresponding potential function.

OR

- (b) Find uniform insulated sphere of dielectric constant κ and radius a carries on its surface a charge density $\lambda P_n \cos \theta$, show that the interior of the sphere contributes an amount $\frac{8\pi^2\lambda^2a^3\kappa n}{(2n+1)(\kappa n+n+1)^2}$ to the electrostatic energy.
- 14. (a) Derive the D'Alembert's solution of one dimensional wave equation.

OR

- (b) Find approximate values for the first three eigenvalues of a square membrane of side 2.
- 15. (a) State and prove the Duhamel's theorem.

OR

(b) Show that the Poisson integral $\theta(x,t) = \frac{1}{2(\pi kt)^{1/2}} \int_{-\infty}^{\infty} \phi(\xi) e^{\frac{-(x-\xi)^2}{4kt}} d\xi$ is the solution of the initial value problem $\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{k} \frac{\partial \theta}{\partial t} - \infty < x < \infty, \theta(x,0) = 0; \ \theta(x,t) = \phi(x), t \to 0.$