PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2023

(Fourth Semester)

Branch - MATHEMATICS

			FLUID D	YNAMICS .	•	
	Time: Three Hours				Maximum: 50 Marks	
		A	Answer Al	-A (5 Marks) LL questions y EQUAL marks	$(5 \times 1 = 5)$	
۱.		e stream line of sta $q x d\tau = 0$	te of motion is ii) $q x d\tau = 1$	$\frac{1}{\text{iii) } q x} d\tau = -1$	iv) $q + d\tau = 0$	
2.	The i) $\frac{1}{L}$	e following is one $\frac{\partial}{\partial t}(\rho \nabla t) = 0$	of the equation of of ii) $\frac{D}{Dt}(\nabla t) = 0$	continuity. $iii) \frac{D}{Dt}(\rho) = 0$	$iv)\frac{D}{Dt}(\rho\nabla t)=1$	
3.	i) r	The necessary condition of the existence of a velocity potential in a fluid is) rotational motion ii) irrotational motion ii) stream iv) sink				
4.		e Reynolds number $u_{an} \frac{h}{n}$ i		on the average velocitii) $u_{an}h$	ity R= iv) $u_{an}v$	
5.	_	uation only on the		which the solution sat iii) Von Karman	isfy the differential iv) Navier Stokes	
			SECTION -	B (15 Marks)		
				LL Questions rry EQUAL Marks	$(5 \times 3 = 15)$	
6.	 a. The velocity vector filed in the flow filed is given by q=i(Az-By)+j(Bx-Cz)+k(Cy-Ax) where A,B and C are non zero constants. Determine the equations of the vortex lines. OR b. Determine the equation of stream lines where the velocity q is given by 					
		q = ix-jy.				
7.	a.	Verify the equality $\sigma_{yz} = \sigma_{yz}$, $\sigma_{zx} =$	y of the shearing st σ_{xz} , $\sigma_{xy} = \sigma_{yx}$. OR	resses of fluid		
	b.	State the relationship between stress and rate of strain.				
8.	a.	Derive the equation	on of continuity.			

- b. Give a note on irrotational flow of fluid.
- 9. a. Derive the shearing stress for flow between Two Coaxial cylinders.

- b. Write a brief note on the Hagan Poiseulle flow.
- 10. a. Derive the boundary layer equations in two dimensional flow.

b. Based on the von Karman integral relation, determine the local frictional coefficient C_f for flow over a flat plate.

SECTION -C (30 Marks)

Answer ALL questions ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11. a. Assuming that the velocity components for a two dimensional flow system can be given in the Eulerian system by u=A(x+y)+Ct and v=B(x+y)+Et. Find the displacement of a fluid particle in the Lagrangian system.
 - b. Given the velocity field q=iAx²y+jBy²zt+kczt², determine the acceleration of a particle of fixed identity.
- 12. a. Derive the energy equation.

(Or)

- b. Derive the equation of continuity.
- 13. a. State and prove Kelvin's theorem at constancy of circulation.

(Or)

- b. Show that the velocity potential $\phi = \frac{a}{2}(x^2 + y^2 2z^2)$ satisfies the Laplace equation and represents the flow against a fixed plane wall.
- 14. a. Derive the velocity distribution of the Plane Poiseuille flow through a pipe.
 - b. Determine the shearing stress of flow between two concentric rotating cylinders.
- 15. a. Derive the Blasius solution of boundary layer along a flat plate.

(Or

b. Solve von Karman integral relation by momentum law.

Z-Z-Z

END