# PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

# **MSc DEGREE EXAMINATION MAY 2023**

(Second Semester)

#### **MATHEMATICS** Branch -

### **TOPOLOGY**

Time: Three Hours

Maximum: 50 Marks

## SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$ 

- If X is any set, then the collection of all subsets of X is a topology on X and is called 1
  - (i) discrete topology
- (ii) trivial topology
- (iii) indiscrete topology
- (iv) standard topology
- Which one of the following is standard bounded metric? 2
  - $\overline{d}(x,y) = \min\{d(x,y),-1\}$
- (ii)  $\overline{d}(x, y) = \min\{d(x, y), 1\}$
- (iii)  $\overline{d}(x, y) = \max\{d(x, y), 1\}$
- (iv)  $\overline{d}(x, y) = \max\{d(x, y), 0\}$
- A space X is said to be connected if there 3
  - (i) exists a separation of X
- (ii) does not exist a separation of X
- (iii) exists a continuous map on X
- (iv) does not exist a continuous map on X
- A subset A of a space X is said to be dense in X if 4
  - $\overline{A} = X$ (i)

(ii)  $\overline{A} = \overline{X}$ 

(iii) A = X

- (iv)  $\overline{A} \subset X$
- A space X is said to be ...... if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets containing A and B respectively. 5
  - (i) regular

(ii) normal

(iii) Hausdorff

(iv) connected

## SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$ 

Let A be a subset of the topological space X and let A' be the set of all limit 6 a points of A. Then prove that  $\overline{A} = A \cup A'$ .

OR

- If  $\mathcal{B}$  is a basis for the topology of X and  $\mathbb{C}$  is a basis for the topology of Y, then prove that the collection  $D = \{B \times C \mid B \in B \text{ and } C \in \mathbb{C}\}$  is a basis for the topology of  $X \times Y$ .
- State and prove the pasting lemma. 7 a

- State and prove the sequence lemma.
- Prove that the image of a connected space under a continuous map is connected. 8 a

- State and prove uniform continuity theorem. b
- Prove that compactness implies limit point compactness. 9 a

Suppose that X has a countable basis. Then prove that every open covering of b X contains a countable subcollection covering X. Cont...

10 a Prove that every metrizable space is normal.

OR

b Prove that a product of completely regular space is completely regular.

### **SECTION -C (30 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$ 

- 11 a Let A be a subset of a topological space X. Prove that
  - i)  $x \in \bar{A}$  if and only if every open set U containing x intersects A.
  - ii) Supposing the topology of X is given by a basis then  $x \in A$  if and only if every basis element B containing x intersects A.

OR

- b i) If  $\mathcal{B}$  is a basis for the topology  $\tau$  of a set X, then prove that  $\tau$  equals the collection of all unions of elements of  $\mathcal{B}$ .
  - ii) Let  $\mathcal{B}$  and  $\mathcal{B}'$  be bases for the topologies  $\tau$  and  $\tau'$ , respectively, on X. Then prove that the  $\tau'$  is finer than  $\tau$  iff for each  $x \in X$  and each basis element  $B \in \mathcal{B}$  containing x, there is a basis element  $B' \in \mathcal{B}'$  such that  $X \in B' \subset B$ .
- 12 a Prove that the topologies on  $R^n$  induced by the Euclidean metric d and the square metric  $\rho$  are the same as the product topology on  $R^n$ .

OR

- b Let X and Y be topological spaces and  $f: X \to Y$ . Then prove that the following are equivalent.
  - (i). f is continuous.
  - (ii). For every subset A of X,  $f(A) \subseteq \overline{f(A)}$ .
  - (iii). For every closed set B in Y, the set  $f^{-1}(B)$  is closed in X.
  - (iv). For each  $x \in X$  and each neighborhood V of f(x), there is a neighborhood U of x such that  $f(U) \subseteq V$ .
- 13 a Prove that if L is a linear continuum in the order topology, then L is connected and so are intervals and rays in L.

OR

- b Prove that the product of finitely many compact spaces is compact.
- 14 a i) Prove that a subspace of a Hausdorff space is Hausdorff and a product Hausdorff spaces is Hausdorff.
  - ii) Prove that a subspace of a regular space is regular and a product of regular space is regular.

OR

- b In a metrizable space X, prove that the following are equivalent.
  - (i). X is compact.
  - (ii). X is limit point compact.
  - (iii). X is sequentially compact.
- 15 a State and prove the Urysohn lemma.

OR

b State and prove the Tychonoff theorem.

**END**