PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Fifth Semester)

Branch - STATISTICS

CORE ELECTIVE - I OPERATIONS RESEARCH -1

Time : Three Hours

SECTION-A (20 Marks)

Maximum : 75 Marks

Answer ALL questions ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 List the uses of OR.
- 2 What are the different types of OR models?
- 3 Define slack variable.
- 4 Define surplus variable.
- 5 What is duality?
- 6 What is integer programming?
- 7 Define feasible solution of a transportation problem.
- 8 Give mathematical formulation of a transportation problem.
- 9 Define assignment problem.
- 10 Define unbalanced assignment problem.

SECTION - B (25 Marks!

Answer ALL Questions

ALL Questions Carry EQUAL Marks (5x5 = 25)

11 a Explain the general methods for solving OR models. .

OR

b Explain the limitations of linear programming problem.

12 a Explain the mathematical formulation of a linear programming problem and its matrix formulation.

OR

b Write the procedure of solving a LPP by two phase method.

13 a Explain the concept of duality.

OR

b Describe the algorithm of Gomory's integer programming problem.

14 a Describe the method of solving unbalanced transportation problem.

OR

b Describe the Vogel's Approximation method.

15 a Solve the assignment problem

	А	В	С	D
Ι	1	4	6	3
Π	9	7	10	9
III	4	' 5	11	7
IV	8	7	8	5

b Explain the processing of n jobs to three machines in a sequencing problem.

SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Solve the following LPP graphically 16 $Max Z = 5xj + 3x_2$ St., $4x_1 + 5x_2 < 1000$ $5x_{I} + 2x_{2} < 1000$ $3xi + 8x_2 < 1200$ and $x_j, x_2 > 0$.
- 17 Using Big M method to solve $Min Z = 4xi + 3x_2$ St., $2x!+x_2 > 10$ $-3xi + 2x_2 < 6$ $x_{i} + x_{2} > 6$ and $x_{15} x_2 > 0$
- 18 Using dual simplex method solve the LPP $Min Z = x_t + x_2$ St., $2xj + x_2 > 2$ $-Xi - x_2 > 1$ and xi, $x_2 > 0$.
 - Solve the transportation problem Destination D2 D1 D3 Supply 5 6 9 А 100 3 5 Origin B 10. 75 7 50 С 6 6 4 6 10 75 80 Demand 70 120 (units)

Solve the following assignment problem Machine

	Widemine					
	1	2-	3	4	5	
1	10	11	4	2	8	
2	7	11	10	14	12	
Job 3	5	6	9	12	14	
4		15	11	10	7	

END

19