PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Fourth Semester)

Branch - STATISTICS

STATISTICAL INFERENCE - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

- Define unbiased estimator. 1
- Define minimum variance unbiased estimator. 2
- Write the sufficient condition for an estimator to be consistent. 3
- Write any two properties of maximum likelihood estimation. 4
- Write the statement of Neyman's factorization theorem. 5
- Define the principle of MLE. 6
- Define posterior distribution. 7
- When can one use a non-parametric test? 8
- Mention the assumption for statistical test. 9
- Define a "run". 10

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

If $x_1, x_2, ..., x_n$ is a random sample from a normal population N (μ , 1). 11 a Show that $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$, is an unbiased estimator of $\mu^2 + 1$.

OR

- Let $X_1 \to X_n$ be a random sample from B(1, P). Show the $x \to x$ is a consistent b estimator of p^2 .
- Define a sufficient estimator and give an example. 12 a

- State and establish a sufficient condition for consistency of an estimator. b
- Describe the method of moments. Find method of moments estimator of 13. a the normal parameters μ and σ .

- Check whether or not maximum likelihood estimator is unique. b
- Obtain $100(1-\alpha)$ % C.I for σ^2 when θ is known in normal distribution. 14 a
 - Obtain 95% confidence limits (for large sample) for the parameter θ of b the poisson distribution.
- i) Distinguish between parametric and non-parametric test. 15 a
 - ii) State the basic assumption made in non-parametric test.

Explain sign test for one sample. b

SECTION - C (30 Marks)

Answer any **THREE** Questions **ALL** Questions Carry **EQUAL** Marks (3 x 10 = 30)

- Listing the regularity condition, state and prove Cramer Rao inequality.
- 17 State and prove Rao Blackwell theorem.
- 18 a Explain Maximum likelihood estimator.
 - b Find the MLE of θ in the poisson population given by $f(x, \theta) = \frac{-e^{\theta}\theta^{x}}{x!}$; x = 0, 1, 2, ...; $0 \le \theta \le \infty$, based on a random sample of size n and also the variance of the estimator.
- Construct the $100(1-\alpha)\%$ confidence interval for the ratio of variances T_2^2/T_1^2 of two independent normal population with unknown means.
- 20 Describe Man- Whitney U-test in detail.

Z-Z-Z

END