(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

<u>CORE ELECTIVE – II</u> MATHEMATICAL STATISTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

- 1 Define extended Axiom of addition.
- 2 Define pairwise independent events.
- 3 State continuous distribution function.
- 4 Define continuous random variable.
- 5 Define mathematical expectation.
- 6 Define continuous convex function.
- 7 Write the moments of Bernouli distribution.
- 8 Write the characteristic function of binomial distribution.
- Write the moment generating function of t- distribution.
- 10 Define F- statistic.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Probability of the impossible event in zero (i.e) $p(\phi) = 0$.

OR

- b If A and B are any two events (sub sets of sample spaces) and are not disjoint, then $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- The diameter of an electric cable say x is assumed to be a continious random variable p.d.f $F(x) = 6x(1-x); 0 \le x \le 1$.
 - (i) check that above is p.d.f.
 - (ii) Determine a number b such that p(x < b) = p(x > b).

OR

- b Explain concept of marginal distribution functions.
- 13 a If x and y are independent random variables then E(xy) = E(x) E(y).

OR

b Let x be a random variable the following probability distribution.

X: -3 6 9 P(x = x): 1/6 1/2 1/3

Find E(x) and $E(x^2)$ and using law of expectation, evaluse $E(2x+1)^2$.

Ten coins are thrown simultaneously. Find the probability of getting at least seven heads.

OR

b To find recurrence relation for the moments of Binomial Distribution.

Cont....

- 15 a Explain assumption for student's t-test and also t-test for single mean.

 OR
 - b A certain stimulus administered to each of the 12 patients resulted in the following increase of blood pressure. 5,2,8,-1,3,0,-2,1,5,0,4, and 6 can be calculated that the stimulus in general be accompanied by an increase in blood pressure.

SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- The axiom of continuity follows from the extended axiom of addition and vice versa.
- For the following probability distribution $dF = y_0 e^{-|x|} dx$, $-\infty \angle x \angle \infty$ show that $y_0 = \frac{1}{2}$, $\mu_1^1 = 0$, $6 = \sqrt{2}$ and mean deviation about mean 1.
- In four tosses of a coin, let x be the number of heads. Tabulate the 16 possible outcomes with the corresponding values of x. By simple counting derive the distribution of x and lance calculate the expected value of x.
- To find mean deviation about mean of binomial distribution.
- A random sample of 10 boys had the following I.Q's 70,120,110,101,88,83,95,98,107,100. Do the data support the assumption of a population mean I.Q of 100? Find a reasonable range in which most of the mean.I.Q values of samples of 10 boys.

END