PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

REAL ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define a equivalence relation.
- 2 Define a metric space.
- 3 Define a compact space.
- 4 Define cantor set.
- 5 Define a Cauchy sequence.
- 6 Define a power series.
- 7 Define about bounded in continuity and compactness.
- 8 Define a local maximum.
- 9 Define a local maximum.
- 10 State the mean value theorem.

SECTION - B (25 Marks)

Answer **ALL** Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Every infinite subset of a countable set A is countable. Prove it.

OF

- b Prove that every neighborhood is an open set.
- 12 a Prove that a compact subset of a metric space is closed.

OF

- b Prove that if E is an infinite subset of a compact set K, then E has a limit point in K.
- 13 a The sub sequential limits of a sequence $\{P_n\}$ in a metric space X form a closed subset of X. Prove it.

OR

- b Given $\sum a_n$, put $\alpha = \lim_{n \to \infty} \sup \sqrt{|A_n|}$, prove the following
 - (i) if $\alpha < 1$, $\sum a_n$ convergent (ii) if $\alpha > 1$, $\sum a_n$ divergent (iii) if $\alpha = 1$, test gives no information.
- Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Prove that f(x) is compact.
 - b Suppose f is a continuous 1-1 mapping of a compact metric space X onto metric space Y. Then the inverse mapping f^1 defined on Y by $f^1(f(x)) = x$ is a continuous mapping of Y onto X. Prove it.

- Let f be defined on [a, b]. If f has a local maximum at a point $x \in (a, b)$ and $f^{\bullet}(x)$ exists then $f^{\bullet}(x) = 0$ prove it.
 - b Suppose f is a real differential function on [a, b] and $f^{\bullet}(a) < \lambda < f'(b)$. Then there is a point $x \in (a, b)$ such that $f^{\bullet}(x) = \lambda$ prove it.

SECTION - C (30 Marks)

Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Prove that a set is open if and only if its complement is closed.
- 17 Show that every K-cell is compact.
- 18 (a) Let $\{P_n\}$ converges to p x if and only if any neighborhood of p contains p_n for all but infinitely many p prove it
 - (b) If $p \in x$, $p^{\dagger} \in x$ and if $\{p_n\}$ converges to p and p^{\dagger} , Show that $p = p^{\dagger}$.
- Let f be a continuous mapping of a compact metric space X into metric space Y. Show that f is uniformly continuous on X.
- If f and g are continuous real functions on [a, b] which are differentiable in (a, b). Then there is a point $x \in f(a, b)$ at which $[f(b) f(a)]g^{\bullet}(x) = [g(a)-g(b)]f^{\bullet}(x)$ prove it.

Z-Z-Z

END