PAMICOIL

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Third Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

DIGITAL ELECTRONICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks (

 $(10 \times 2 = 20)$

- Convert $(72)_{10}$ to binary value.
- 2 What is meant by Excess -3 code?
- 3 Draw the EX-NOR gate and write its truth table.
- What do you mean by Octal?
- 5 How many inputs for Half adder and full adder?
- What do you mean by decoder?
- Write the states of the JK flip flop when J = 1; K = 0 and J = 0; K = 1.
- 8 Write the types of register.
- 9 What is meant by accuracy?
- 10 What do you mean by counter?

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

- Convert the following binary numbers to Gray code: (i) 110110 (ii) 111000.
 - b Convert (i) (1101101)₂ to decimal (ii) (4526)₁₀ to Hexadecimal.
- 12 a Prove Distributive and associative laws.

OR

- b Prove De-Morgan's theorem.
- 13 a Perform the binary addition. (i) 11011 + 110 (ii) 100101 + 10011.

OR

- b Explain the working of 4 x 2 line encoder with neat diagram.
- 14 a Explain the working of T- flip flop with neat diagram.

OR

- b Explain the working of serial in serial out register with neat diagram.
- 15 a Explain the speciality of counter type ADC.

OR

b Explain the binary ladder network.

SECTION - C (30 Marks)

Answer any **THREE** Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- 16 Convert (a) 125 to BCD code (b) $(AB)_{16}$ to Decimal (c) $(76)_{10}$ to Excess-3 code.
- Draw the K-map and solve the following Boolean expressions: (a) $F(A, B, C) = \sum (0, 1, 3, 5)$ (b) $F(w, x, y, z) = \sum (0, 5, 7, 8, 11, 13, 15)$.
- Draw Block diagram and working of 4-bit parallel binary adder.
- Write note on working of JK Master slave flip flop with neat diagram.
- Discuss in detail about accuracy and resolution.