(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

DIFFERENTIAL EQUATIONS LAPLACE TRANSFORMS & FOURIER SERIES

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

1 Solve
$$y = (x - a)p - p^2$$
.

- Find the complementary function of $(D^2 8D + 9)y = 8 \sin 5x$. 2
- Eliminate the constants a and b from z = ax + by + a. 3
- Solve the equation pq = k. 4
- Prove that $L\{f(t) + \phi(t)\} = L\{f(t)\} + L\{\phi(t)\}.$ 5
- 6 Find $L[at^2 + bt + c]$.
- Find L⁻¹ $\frac{1}{(s+2)^2+16}$. 7
- Find L⁻¹ $\left[\frac{1}{s(s+a)}\right]$. 8
- 9 Define Fourier series of a function.
- Write the properties of odd function and even function in a Fourier series. 10

SECTION - B (25 Marks)

Answer ALL Ouestions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Solve
$$p^2 + 2yp \cot x = y^2$$
.

b Solve
$$(D^3 - D^2 - D + 1) y = 1 + x^2$$
.

- Eliminate the functions f and ϕ from the relation $z = f(x + ay) + \phi(x ay)$. 12 a
 - b Solve $p(1+q^2) = q(z-1)$.
- Find L[sin² 2t]. 13 a

b Find the Laplace transform of
$$f(t) = e^{-t}$$
 when $0 < t < 4$;
= 0 when $t > 4$.

14 a Find L⁻¹
$$\left[\log \frac{s+1}{s-1}\right]$$
.

b Find L⁻¹
$$\left[\frac{1}{(s+1)(s^2+2s+2)} \right]$$
.

15 a Express $f(x) = x (-\pi < x < \pi)$ as a Fourier series with the period 2π .

$$0 If f(x) = x when 0 < x < \frac{\pi}{2}$$

$$=\pi$$
 - x when $x > \frac{\pi}{2}$,

then expand f(x) as a sine series in the interval $(0, \pi)$.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

16 Solve
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$
.

- 17 i) Solve $p = y^2q^2$
 - ii) Solve $p + q = \sin x + \sin y$.

18 Find i)
$$L[t e^{-t} \sin t]$$
 ii) $L\left[\frac{\sin at}{t}\right]$.

Solve
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} - 5y = 5$$
, given that $y = 0$, $\frac{dy}{dt} = 2$ at $t = 0$.

Express $f(x) = \frac{1}{2}(\pi - x)$ in the interval $(0, 2 \prod)$ as a Fourier series with the period 2π .

$$Z-Z-Z$$