PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Fourth Semester)

Branch - MATHEMATICS

MATHEMATICAL STATISTICS-II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define simple random sampling.
- Write the normal equation, for fitting a st. line.
- 3 Define Crammer Rao Inequality.
- 4 Define Unbiasedness.
- 5 Define MLE.
- What is minimum variance bound estimator?
- What is null hypothesis?
- 8 Define critical regions.
- 9 Write any two assumption of t-test.
- 10 What is contingency table?

SECTION -- B (25 Marks)

Answer **ALL** Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Explain the method of selecting a stratified random sample.

OR

- b Derive the normal equation for fitting of exponential curves.
- Prove that for Cauchy's distribution not sample mean but sample median is consistent estimator of the population mean.

OR

- b Let $x_1, x_2,...x_n$ be a random sample from a uniform population on $[0, \theta]$. Find a sufficient estimator for θ .
- 13 a Write the properties of maximum likelihood estimators.

OR

- b Explain the method of minimum variance of estimating parameters.
- 14 a Define (i) level of significance (ii) power of the test.

OR

- b Let p be the probability that a coin will fall head in a single toss in order to test $H_0: P = \frac{1}{2}$ against $H_1: P = \frac{3}{4}$. The coin tossed 5 times and H_0 is rejected of more than 3 heads are obtained. Find the probability of the type I error.
- 15 a What are the applications of t-distribution?

OR

b A co-efficient of correlation of 0.2 is derived from a random sample of 625 pairs of observation. is this value of 'r' significant?

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

16	Fit an ex	ponentia	al curve	of the for	m Y = a	b ^x to the	followin	g data :	
	X :	1	2	3	4	5	6	7	8 -
	Y :	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1
				L		+		(Cont

17 State and prove Rao Blackwell theorem.

Let $x_1, x_2,...x_n$ be a random sample from the uniform distribution with pdf:

$$f(x,\theta) = \frac{1}{\theta}, 0 < x < \infty, \theta > 0$$

Obtain the maximum likelihood estimator for θ .

Obtain 100 $(1 - \alpha)$ % confidence limits for the parameter λ of the poisson distribution.

Below are given the gain in weights (in kgs) of pigs fed on two diets A and B:

Diet A: 25 32 30 34 24 14 32 24 30 31 35 25													١			
Diet A:	25	32	30	34	24	14	32	24	30	31	35	25	-			1
Dict A.	123												25	29	22	Ì
Diet B:	44	34	22	10	47	31	40	30	32	35	18	21	.33	29	22	
	1 1 1					L										

Test, if the two diets differ significantly as regards their effect on increase in weights.

Z-Z-Z

END