(AUTOROMOCS)

BSc DEGREE EXAMINATION DECEMBER 2017

(First Semester)

Branch - MATHEMATICS

CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- Give the rule for determining the maxima and minima values of f(x) when f(x) and f'(x) are continuous.
- Find the maximum value of $\frac{\log x}{x}$ for positive values of x.
- 3 Define evolute and involute.
- 4 Give the coordinates of the centre of curvature.
- 5 Prove that $\int_{0}^{\pi/2} \sin^{n} x \, dx = \int_{0}^{\pi/2} \cos^{n} x \, dx.$
- 6 If f(x) is an odd function of x, then prove that $\int_{-a}^{a} f(x)dx = 0.$
- Evaluate $\iint xy \, dx \, dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- 8 Define double integral.
- 9 Prove that $\lceil (n+1) = n!$ when n is a positive integer.
- 10 Evaluate $\int_{0}^{1} x^{7} (1-x)^{8} dx$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Find $\frac{du}{dt}$ where $u = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$.

OR

- b Find $\frac{du}{dx}$ where $u = x^2 + y^2$ where $y = \frac{1-x}{x}$.
- Find the envelope of the family of circles $(x a)^2 + y^2 = 2a$, where a is the parameter.

OF

- b What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1)?
- 13 a Prove that $\int_{0}^{\pi} \theta \sin^{3} \theta d\theta = \frac{2\pi}{3}.$
 - b Find the reduction formula for $\int \cos^n x \, dx$ (n being a positive integer).

14 a Evaluate $\iint (x^2 + y^2) dx dy$ over the region for which x, y are each ≥ 0 and $x + y \le 1$.

OR

- b Change the order of integration in the integral $\int_{0}^{a} \int_{x^2/2}^{2a-x} xy \,dx \,dy$ and evaluate it.
- 15 a Prove that $\lceil (\frac{1}{2}) = \sqrt{\pi}$.

b Express $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of Gamma functions and evolute the integral $\int_{0}^{1} x^{5} (1-x^{3})^{10} dx$.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks (3 x 10 = 30)

- Find the maximum or minimum values of $2(x^2 y^2) x^4 + y^4$.
- Show that the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is another cycloid.
- Find the reduction formula for $I_{m,n} = \int x^m (\log x)^n dx$ (where m and n are positive integers). Hence or otherwise evolute $\int x^4 (\log x)^3 dx$.
- Evaluate $\iiint xyz \, dx \, dy \, dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.
- Prove that $\iiint \frac{dxdydz}{(1-x^2-y^2-z^2)^{\frac{1}{2}}} = \frac{\pi^2}{8}$, the integration extended to all positive values of the variables for which the expression is real.