(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Fifth Semester)

Branch - MATHEMATICS

REAL ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 When do you say that the sets A and B have the same cardinal number?
- 2 Prove that a finite point set has no limit point.
- 3 Define a compact set.
- A and B are two subsets of a metric space X. When do you say that they are separated?
- 5 Define the diameter of a non-empty set E of a metric space X.
- 6 If $\sum a_n$ converges, prove that $\lim a_n = 0$.
- 7 Define: Uniformly continuous.
- 8 Define: Discontinuity of the first kind.
- Suppose f and g are defined on [a, b] and are differentiable at a point $x \in [a, b]$. Write the formula for $\left(\frac{f}{a}\right)(x)$.
- 10 State: Generalized mean value theorem.

SECTION - B (25 Marks)

Answer **ALL** Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

Prove that every infinite subset of a countable set A is countable. 11 a

- Define closure of E. Prove that $E = \overline{E}$, if and only if E is closed. b
- 12 a If E is an infinite subset of a compact set k, prove that E has a limit point in k.

OR

- b Let E be a subset of the real line R!. If $x, y \in E$, x < z < y and E is connected, prove that $z \in E$.
- $\sum_{n=0}^{\infty} x_n = \frac{1}{1-x}.$ If $x \ge 1$, prove that the series If $0 \le x \le 1$, prove that 13 a diverges.

OR

b Prove that e is irrational.

Cont ...

- F is a mapping of a metric space X into a metric space Y, If F is continuous on X, prove that f¹(v) is open in X, for every open set V in Y.

 OR
 - b Let X and Y be two metric spaces. If f is a continuous mapping of X into Y and if E is a connected subset of X, prove that f (E) is connected.
- Let f be defined on [a, b]. If f is differentiable at a point $x \in [a, b]$, prove that f is continuous at "x". What do you say about the converse?
 - b Let f be defined as $f(x) = \begin{cases} x.\sin(\frac{1}{x}), & (x \neq 0) \\ 0, & (x = 0) \end{cases}$ show that f'(x) does not exist when x = 0 and find f'(x), if $x \neq 0$.

SECTION - C (30 Marks)

Answer any **THREE** Questions **ALL** Questions Carry **EQUAL** Marks (3 x 10 = 30)

Let $\{E_{\alpha}\}$ be a (finite or infinite) collection of sets E_{α} .

Then
$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}^{c}\right)$$
.

- Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact relative to Y.
- Let $\{S_n\}$ be monotonic. Prove that $\{S_n\}$ converges if and only of it is bounded.
- Let E be a non compact set in \mathbb{R}^1 . Then prove the following
 - a) There exists a continuous function on E which is not bounded.
 - b) There exists a continuous and bounded function on E, which has no maximum.
- State and prove the mean value theorem.

Z-Z-Z

END