BRO COLFERE OF SKIP & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Third Semester)

Branch - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS & FOURIER TRANSFORM

Maximum: 75 Marks Time: Three Hours

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

Eliminate the arbitrary function from $z = f(x^2 + y^2)$. 1

2 Solve
$$\frac{\partial^2 z}{\partial x \partial y} = 0$$
.

- Write the complete integral of px + qy + f(p, q) = 0. 3
- Write the subsidary equation of $(y \pm z) p + (z \pm x) q = x \pm y$. 4
- Define Fourier series. 5
- State Drichelet's conditions. 6
- Prove that Fourier transform is linear. 7
- Define infinite complex Fourier transform. 8
- Find Fourier sine and cosine transforms of f''(x). 9
- Define inversion formula for sine transform. 10

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Solve
$$p^2 + q^2 = npq$$
.

OR

b Solve
$$9(p^2z + q^2) = 4$$
.

Find the general solution of (y + z) p + (z + x)q = x + y. 12 a

b Solve
$$p^2 + x^2y^2q^2 = x^2z^2$$
. OR

Express $f(x) = x (-\pi \le x \le \pi)$ as a Fourier series with period 2π . 13 a

Express f(x) = c - x where 0 < x < c as a half range cosine series with b period 2c.

Show that the transform $e^{-x^2/2}$ is $e^{-s^2/2}$ by finding the fourier transform 14 a of $e^{-a^{-x}}$, a > 0.

Find Fourier cosine transform of $f(x) = \begin{bmatrix} \cos x & \text{in } 0 < x < a \\ 0 & x \ge a \end{bmatrix}$ b

Cont ...

15 a Find the finite Fourier cosine transform of $f(x) = e^{-in(0, \epsilon)}$

b Solve the diffusion equation $\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial x^2}$, $-\infty < x < \infty$, t > 0, with the conditions. u(x, 0) = f(x) and $\frac{\partial u}{\partial x}$, u tend to zero as x tends to $+\infty$.

SECTION - C (30 Marks)

Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3 x 10 = 30)

Solve (i)
$$Z = px + qy + p^2q^2$$
 (ii) $p^2 + q^2 = x + y$.

- Obtain a complete integral of $xp^2 ypq + y^3q y^2z = 0$.
- Express $f(x) = \frac{1}{2}(\pi x)$ as a Fourier series with period 2π , to be valid in the interval 0 to 2π .
- 19 State and prove Parseval's identity.
- Solve $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$, 0 < x < 4, t > 0 given u(0, t) = 0, u(4, t) = 0; $u(x, 0) = 3 \sin \pi x 2 \sin 5\pi x$.

Z-Z-Z

END