PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Fourth Semester)

Branch - MATHEMATICS

NUMERICAL METHODS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

- Give the geometrical interpretation of Regula Falsi method. 1
- Discuss the conditions under which sequence of approximations coverage in 2 iteration method.
- Compare Gauss Elimination and Gauss Seidal Iteration methods. 3
- Explain the substitution procedures used in Gauss Elimination method. 4
- Prove that $\Delta = \delta E^{1/2}$. 5
- Discuss the merits and demerits of Lagrange's interpolation formula. 6
- Explain Richardson's deferred approach to the limit in finding numerical integration.
- Derive Newton's backward difference formula to compute derivatives using 8 operational equality E=e^{hD}.
- Specify the equations of second order range-Kutta algorithm. 9
- Write the demerit of Taylor's method of solution. 10

SECTION - B (25 Marks)

Answer ALL Ouestions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

Determine the root of xex-3=0 correct to three decimal places, using 11 a method of false position.

- Show that the iterative formula for finding the reciprocal of b N is $x_{n+1} = x_n(2-Nx_n)$ and hence find the value of $\frac{1}{21}$.
- Find by Gaussian elimination, the inverse of matrix $\begin{pmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$. 12 a

OR

- Solve by Gauss Seidel iteration method: b 27x + 6y - z = 85; 6x + 15y + 2z = 72; x+y+54z = 110.
- Prove that 13 a

(i)
$$\Delta = 1/2 \delta^2 + \delta \sqrt{1 + \delta^2/4}$$
 (ii) $\mu \delta = 1/2 \Delta E^{-1} + 1/2\Delta$.

OR

13 b Find the value of ϕ if $F(\phi) = 0.3887$

ф :	21°	23°	25°
$F(\phi)$:	0.3706	0.4068	0.4433

14 a Find $\frac{dy}{dx}$ at x = 1.25 from the table

X	1.00	1.05	1.10	1.15	1.20	1.25	1.30
y	1.00000	1.02470	1.04881	1.07238	1.09544	1.11803	1.14017

OR

- b Find approximate value of $\int_{0}^{\pi} \sin x \, dx$ dy trapezoidal rule(Divide the range into 10 equal parts).
- Prove that the solution for the equation $\frac{dy}{dz} = y$, y(0)=1 yields $y_m = (1+h+1/2h^2)^m$ using second order runge Kutta method.

b Solve the equation $\frac{dy}{dx} = 1 - y$ with initial condition x = 0, y = 0 using Euler's algorithm and find solutions at x = 0.1, 0.2, 0.3, 0.4.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Find a root of the equation $x^3 4x 9 = 0$ correct to three decimal places by using the bisection method.
- Solve the following equations by the method of triangularisation: 2x + y + 4z = 12; 8x - 3y + 2z = 0; 4x + 11y - z = 33.

18 The following are data from the steam table

Temp OC	140	150	160	170	180
Pressure kgf/cm ²	3.685	4.854	6.302	8.076	10.225

Using Newton's formula, find the pressure of the steam for a temperature of 142°.

- Explain the principle of Simpson's rule and establish a formula for finding numerical integral using Simpson's one third rule.
- Apply Taylor series method to find the value of y(1.1), y(1.2) and y(1.3) correct to three decimal places given that $y^1 = xy^{\frac{1}{2}}$, y(1) = 1. Get the solution of differential equations and compare the results.

Z-Z-Z