13G COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(Third Semester)

Branch - MATHEMATICS

MECHANICS - I (STATICS)

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define equilibrium.
- 2 State Polygon law of forces.
- What is the magnitude and direction of the resultant of two like parallel 3 forces acting on a rigid body.
- 4 Define moment about a point.
- 5 Define moment of a couple.
- 6 Define arm of a couple.
- State the third form of condition of equilibrium. 7
- State the theorem on reduction of any number of coplanar forces. 8
- 9 Define centre of gravity.
- What is the C.G. of a uniform sold hemisphere of radius 'a'? 10

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a State and prove Lami's theorem.

- Show that a given force may be resolved into three components, acting in b three given lines which are not all parallel or all concurrent.
- Derive the conditions of equilibrium of three coplanar parallel forces. 12 a
 - State and prove Generalised theorem of moments (Principles of moments). b
- Prove that a couple and a single force acting on a body cannot be in 13 a equilibrium but they are equivalent to a single force acting at some other points parallel to its original directions.

- ABC is an equilateral triangle of side a: D, E, F divides the sides BC, CA, b AB respectively in the ratio 2:1. Three forces each equal to P act at D, E, F perpendicularly to the sides and outward from the triangle. Prove that they are equivalent to a couple of moment ½ pa.
- 14 a Obtain the equation to the line of action of the resultant.

State and prove the second form of the conditions of equilibrium of a b system of coplanar forces.

Cont ...

- Prove that the centre of gravity of a body is unique.
 - b Find the C.G of a hollow hemisphere of radius 'a'.

SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Prove that the algebraic sum of the resolved parts of two forces in any direction is equal to the resolved part of the resultant the resultant in the same direction.
- 17 State and prove Varigon's theorem of moments.
- Prove that two couples in the same plane whose moments are equal and of the same sign are equivalent to one another.
- Forces 3, 2, 4, 5 kg wt. act respectively along the sides AB, BC, CD and DA of a square. Find the magnitude of their resultant and the points where its line of action meets AB and AD.
- Find the C.G of a uniform circular arc subtending an angle 2α at the centre.

Z-Z-Z

END