(AUTONOMOUS)

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2017

(First Semester)

Branch - ELECTRONICS

MATHEMATICS-I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- If \vec{A} and \vec{B} are irrotational, show that $\vec{A} \times \vec{B}$ is solenoidal.
- Give the vector $\vec{F} = xz\vec{i} + yz\vec{j} + z^2\vec{k}$, evaluate $\int_c \vec{F} d\vec{r}$ along c, where c is the straight line joining the points (0, 0, 0) to (1, 1, 1).
- Find the eigen values of $\begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$
- 4 Define unitary matrix and give an example.
- 5 If $y = e^{2x}$, prove that $y_2 4y = 0$.
- 6 If $y = -x^3 \log^x$, prove that $x \frac{d^2 y}{dx^2} 2 \frac{dy}{dx} + 3x^2 = 0$.
- 7 Define Laplace Transform.
- 8 Find $L(t^2 + 2t + 3)$.
- 9 Define Analytic function.
- Writ CR equation in polar coordinates.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$.

- Find the directional derivative of $\phi(x,y,z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$.
 - OR
 - b Prove that $\nabla \cdot (\phi u) = \phi(\nabla \cdot u) + (\nabla \phi) \cdot u$.
- 12 a Find the characteristic equation of the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ and hence find A^{-1} .

OR

- b Verify Cayley Hamilton theorem and hence find A^{-1} if $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$.
- 13 a Find the nth derivative of $\frac{2x+1}{(2x-1)(2x+3)}$
 - b Verify Euler's theorem for $u = x^3 + y^3 + 3x^2y 3xy^2$.
- 14 a Find (i) $L(e^{at}t^n)$ (ii) L (t sinat).

OR

b Find (i)
$$L^{-1} \left(\frac{1}{(s^2 + 6s + 13)^2} \right)$$
 (ii) $L^{-1} \left(\frac{2s + 3}{(s - 3)5} \right)$.

- 15 a State and prove Cauchy's fundamental theorem.
 OR
 - b If f(z) is regular function of z, prove that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4|f'(z)|^2$.

SECTION - C (30 Marks)

Answer any **THREE** Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Prove that $\vec{F} = yz^2\vec{i} + (xz^2 1)\vec{j} + 2(xyz 1)\vec{k}$ is irrotational and find its scalar potential.
- Find all the characteristics roots and the associated characteristic vectors of the matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$.
- 18 If $y = a \cos(\log x) + b \sin(\log x)$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$
- i) Solve y'' + 5y' + 6y = 2, given y(0) = y'(0) = 0.
 - ii) Find $L^{-1} \left(\frac{s+2}{(s^2+4s+5)^2} \right)$.
- 20 Derive Cauchy Riemannian equations.

Z-Z-Z

END