PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018

(First Semester)

Branch -MATHEMATICS

<u>ALGEBRA</u>

SECTION-A (10 Marks!

Answer ALL questions

Maximum: 75 Marks

		s carry EQUAL marks $(10 \times 1 = 10)$
1 Th	e number of conjugate classes in s (i) 3 (iii) 7	54 is (ii) 5 (iv) 11
2	The number of 13-Sylow subgro (i) 1 (iii) 5	oups of a group G of order 11 ² 13 ² is (ii) 3 (iv) 7
3	The remainder of dividing $f(x) = 3x^4 + x^3 + 2x^2 + 1$ by $g(x) = x^2 + 4x + 2$, where $f(x)$ and $g(x)$ belong to $z_5[x]$ is (i) $4x + 1$ (ii) $2x+3$ (iii) $x+4$ (iv) $2x+1$	
4	The polynomial x ² - 2 is (i) reducible over Z (iii) irreducible over Q	(ii) reducible over Q (iv) irreducible over R
5	The degree of V2 over Q is (i) 0 (ii) 1 (iii) 2 (iv) 3	
6	The splitting field for $f(x) = x^4$. (i) Q (V2) (w) Q (S)	$5x^{2} + 6 e Q[x]$ is (ii) Q(V2,V3) (iv)Q(V2,V5)
7	If $f(x) = F(x)$ is irreducible and i (i) no roots (iii) multiple roots	f the characteristic of F is 0, then f(x) has (ii) no multiple roots (iv) distinct roots
8	all elements $a e$ k such that (i) cr(a) = a, for some cr e G	ns of K, then the fixed field of G is the set of (ii) σ (a) * a, for some <i>a</i> e G (iv) cr(a) * a, for all cr e G
9	The linear transformation $T e A$ (i) (vT, v) = 0 (iii) (uT, v) = (u, vT*)	 (V) is said to be unitary if for all u, v e V (ii) (uT, vT) = (u, v) (iv) TT* = T*T
10	If T is Hermitian, then all its characteristic roots are (i) 0 (ii) real (iii) complex (iv) 1	
<u>SECTION - B (25 Marks!</u> Answer ALL questions ALL questions carry FOUAL Marks (5x5 = 25)		

ALL questions carry EQUAL Marks (5x5 = 25)

11 a If G is a finite group, then prove that $C_a = o(G)/o(N(a))$.

OR

b State and prove third part of Sylow' theorem.

Page 2

13 a If L is an algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.

OR

- b Prove that r' defines an isomorphism of F(x) onto F'(l) with the property that ar'' = a' for evry $a \in F$.
- 14 a Prove that the polynomial $f(x) \in F(x)$ has a multiple root if and only if f(x) and f'(x) have a nontrivial common factor.

OR

- b If K is a finite extension of F, then prove that G(K, F) is a finite group and its order, O(G(K, F)) satisfies $O(G(K, F)) ^{[K : F]}$.
- 15 a Prove that the linear transformation T on V is unitary if and only is it takes an orthonormal basis of V into an orthonormal basis of V.

OR

b If $T \in A(V)$, then prove the following : (i) $T^* e A(V)$ (ii) $(T^*)^* = T$ (iii) $(S + T)^* = S^* + T^*$

SECTION -C (40 Marks!

Answer ALL questions ALL questions carry EQUAL Marks (5x8 = 40)

16 a If $O(G) = p^2$ where p is a prime number, then prove that 'G' is abelian, b State and prove Cauchy's theorem.

OR

- c State and prove Sylow's theorem.
- 17 a Define the content of the polynomial,
- b State and prove the Einsteins criterion.

OR

- c Define a unique factorization domain.
- d If R is a unique factorization domain and if p(x) is a primitive polynomial in R(x), then prove that is can be factored in a unique way as the product of irreducible elements in R(x).
- 18 a Prove that the element *a* e K is algebraic over F is and only if F(a) is a finite extension of 'F\

OR

b State the remainder theorem.

c Prove that a polynomial of degree 'n' over a field can have at most 'n' roots in any extension field.

19 a Define a simple extension.

b If 'F' is of characteristic 'O' and of a, b are algebraic over F, prove that there exists an element $c \in F(a, b)$ such that F(a, b) = F(c).

OR

- c Prove that K is normal extension of F if and only if K is the splitting field of some polynomial over F.
- 20 a If $T \in A(V)$ has all its characteristic roots in F, prove that there is a basis of 'V' in which the matrix of T is triangular.

OR

b If F is a field of characteristic 0, and if T e AJV is such that trV - 0 for all i > l, then prove that T is nilpotent.